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Abstract We present a system to quickly and easily create an animation of
water scenes in a single image. Our method relies on a database of videos
of water scenes and video retrieval technique. Given an input image, alpha
masks specifying regions of interest, and sketches specifying flow directions,
our system first retrieves appropriate video candidates from the database and
create the candidate animations for each region of interest as the composite
of the input image and the retrieved videos: this process spends less than
one minute by taking advantage of parallel distributed processing. Our system
then allows the user to interactively control the speed of the desired animation
and select the appropriate animation. After selecting the animation for all
the regions, the resulting animation is completed. Finally, the user optionally
applies a texture synthesis algorithm to recover the appearance of the input
image. We demonstrate that our system allows the user to create a variety of
animations of water scenes.
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Fig. 1 We propose a method for creating the animation from a single image of a water
scene based on video retrieval. Given an input image (a), our system retrieves videos from
a database (b), each of which appears similar to a part of the input image (c). We finally
make a composite of the image and the retrieved videos to create the final animation (d).

1 Introduction

Animating parts of a still image has been and still is an active research area in
computer graphics, and creating natural animations of water remains a great
challenge. Several attempts to do this have been made but they have not
been very successful, since the methods used are limited to periodic motion
or are computationally very expensive [3,20,5,21]. Furthermore, the results
obtained using these previous methods still look unnatural when compared
to real footage. Creating natural, high-resolution animation of water from a
single image has not yet been achieved.

We assume that the unnaturalness comes from the fact that these previous
methods use only a small amount of the information contained in an actual
fluid flow. In Chuang et al.’s method [3], only subtle periodic fluctuations on
the water surfaces could be produced since only stochastic information about
the fluid motion was used. In Okabe et al.’s method [20] and Gui et al.’s
method [5], they failed to produce a wide variety of fluid motions since only a
single video example was used. Using local information, such as small patches,
is a nice approach [29,21]; however, in this method, information on the global
structure of the fluid flow was lacking. In this paper, in order to address the
problems encountered in the prior work, we present a new method for water
animation in a picture. We collect as many video examples as possible and
try to use them as they are. Our method is easy to parallelize and provides
the user with quick feedback. This allows us to create various animations from
single input pictures.

The basic idea of our method is to use a large video database of real water
scenes and replace water regions in the input image with those in the videos.
The key to the success of creating natural animation is to use coherent video
regions as much as possible. More concretely, for each of the water regions
with similar appearance in the input image, our method finds the best match-
ing region from all the video examples: the user is asked to specify a set of
coherent regions in the input image with similar appearance and their overall
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flow directions; then our method automatically finds the best matching video
for each of the user-specified regions by registration. This simple approach
produces high quality results as shown in Figure 1 and the supplementary
video.

The benefits of our method are as follows. Firstly, we can create high
quality and high resolution results that cannot be achieved by any of the
previous methods. Secondly, since we use a video database, the user can avoid
spending time on manually searching for suitable videos. Thirdly, the method
is very simple and is suitable for parallelization. This results in a short turn
around time, allowing the user to try different results interactively by selecting
candidate animations and specifying the desired speed of the animation.

Each technique involved in our system, e.g., video retrieval and synthesis,
is intuitive and has no substantial new technical contribution. However, our
system and application are novel: there has never been a system like ours,
where the resulting animations are compelling, and a good speedup is obtained
over prior work.

Our method of video synthesis performed by a form of two-band blending
(Sec. 3.4) is simple but does not work well for very dynamic motions of fire
and smoke, which change their overall shapes dynamically over time. Therefore
our current scope is limited to water scenes, where inside texture dynamically
changes but overall shapes of water are almost static over time. In other words,
our simple blending method works surprisingly well for stationary temporal
dynamics like water animations. We demonstrate the power of this new ap-
proach by showing several examples of water animation in real images as well
as paintings.

2 Previous work

Video texture synthesis creates animations of fluids from video examples [29,1,
27,4]. These methods, however, do not allow the user to modify the appearance
or motion of the synthesized animation. Wang and Zhu [28] analyzed fluid
animation, represented it with textons, and synthesized an animation. Bhat et
al. [2] proposed a sketching interface that enables users to edit a fluid animation
in a video example. Users can also change the appearance of the animation,
but the problem of animating a picture of fluid has not yet been solved. Kwatra
et al. [12] developed a method by which animation of a texture flowing over
a user-specified motion field can be designed, but where only a stationary
motion field was demonstrated without any high-frequency fluid features. Ma
et al. [19] extended example-based texture synthesis enabling users to affect
the motion field details. Cliplets allows users to edit an input video to create a
cinemagraph, where still image and video segments are juxtaposed [11]. These
methods enable users to modify an existing animation and to synthesize a novel
animation, but they do not allow users to specify just a single image for the
animation.
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Many methods have been proposed for creating animations from a single
image [9,10,8,31]. These methods are useful for touring into a picture and cre-
ating character animations, but fluid animation is beyond their scope. Chuang
et al. [3] proposed a method to synthesize an animation with stochastic motion
from a single image, but this technique only supports subtle oscillation of the
water surface, such as ripples, and not flowing fluid animation. Lin et al. [16]
synthesized animation from multiple, instead of single, high-resolution stills.

Our method is related to image and video database, which are recently
used to image and video syntheses for computer graphics applications. Mil-
lions of photographs are useful for scene completion [6]. SIFT Flow is used
to estimate the motion field in a single image and also to transfer part of a
video example onto a single image [17]. A video database of outdoor scenes
is useful for scene relighting [14]. A database of time-lapse videos is useful to
create an image at a different time of day from an input image [26]. Laffont
et al. demonstrated that manually annotated thousands of images from web-
cams are useful to modify transient attributes in outdoor scenes [13]. However,
these methods don’t address the problem of animating a picture of fluid using
a video database.

Our method is closely related to those synthesized fluid animations that
use examples of videos [20,5,21,22]. These methods use a still image for the
input as a guide to synthesize the animation. Okabe et al. [20] and Prashnani
et al. [22] used a single video for animating a picture of a fluid. In this method,
however, the quality of results is highly dependent on the choice of video. Ok-
abe et al. improved this approach by utilizing a video patch database [21].
Although this method has the potential to create high quality animations, its
computational cost is prohibitively expensive. The method is also inherently
difficult to accelerate by parallel computation. Thus, the method is not easily
scalable and it is difficult to create the high resolution animation often re-
quired in a production environment. Furthermore, the method often creates
incoherent fluid flows, resulting in unnatural animation, since it focuses on the
matching of a local flow field within a patch to find the best patch.

3 Our approach

The inputs to our system consist of three parts. Figure 2 shows the input
image that the user wants to animate, alpha masks specifying the regions
of interest, and sketches specifying the flow directions. Given these inputs,
our system retrieves videos of water scenes from a database (Section 3.2)
so that the appearance and motion of part of each video matches each user-
specified region of interest in the input image. Our system retrieves the 16 best-
matched videos for each region of interest (Section 3.3), and shows the user
candidate animations of composites of the input image and each retrieved video
(Section 3.4). Figure 3 shows four versions of composites for each region of
interest: one region is a waterfall and the other region is a river. The user then
observes the candidate animations and manually selects the most appropriate
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one for each region. Our user interface is inspired by Hays et al.’s method [6].
Finally, the system makes a composite of the input image and the selected
videos to create the animation. Furthermore, the user can optionally transfer
features from the input image to the animation so that the texture of the
resulting animation becomes similar to the input image.

Fig. 2 The input image, the user-specified regions of interest (consisting of the waterfall
region and the river region), and the user-specified flow directions.

Fig. 3 Four versions of composites made using videos retrieved for the waterfall region
(left) and the river region (right).
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3.1 Problem Definition

Figure 4 illustrates our method for animating pictures of water scenes. Fig-
ure 4-a shows the input image. Figure 4-b shows the part of the waterfall
specified by the user as the region of interest. We retrieve the video shown in
Figure 4-c from the database and overlap the waterfalls in the input image
and the video as shown in Figure 4-d. Since both waterfalls have similar ap-
pearance and would have similar motion, we can animate the input image by
making the composite of the input image and the video.

Fig. 4 Illustration of our method for animating pictures of water scenes.

To create a high-quality animation based on this idea, we propose four cri-
teria: 1) the intersection between the region of interest in the input image and
the water parts in the video should be as large as possible; 2) the input image
and the video should have similar appearance; 3) the input image and the video
should have similar flow directions; 4) the motion in the video should match
the motion expected from the input image. We define a similarity function to
mathematically formulate these criteria:

S = Soverlap(i, t)× (1)∑
p

Sfeature(p, i, t)× Sflow(p, i, t)× Smotion(p, i, t)× Smask(p, i, t),(2)

where the four functions Soverlap, Sfeature, Sflow, and Smotion correspond
to the four criteria, respectively. Let I denote the input image. p = (px, py)
represents the pixel position in I. i represents the index of a video in the
database. t represents a two-dimensional (2D) vector t = (tx, ty). The ranges
of t are −wI < tx < wI and −hI < ty < hI, where wI and hI are the width
and height of the input image I.

Our procedure is as follows: first, we maximize the function S for the r-th
region of interest with respect to the index of the video i and its translation t,
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i.e., arg maxi,t S. Then, we create an animation of the r-th region of interest
by making a composite of the input image and the i-th video translated by t.
Note that S is defined not as weighted sum of Soverlap, Sfeature, Sflow, and
Smotion but as multiplication of them: we must satisfy all the constraints of
Soverlap, Sfeature, Sflow, and Smotion; in other words, if any one of them are
lacking, it will not produce any satisfactory result. However, since the direct
maximization of S is difficult, we create candidate animations in terms of S
(as shown in Fig. 3) and ask the user to select one of them.

We define the first criterion about intersection Soverlap as follows:

Soverlap(i, t) = A(Mr ∩ T (MVi , t)). (3)

Let Ar denote the user-specified alpha mask representing the r-th region of
interest. We define a binary mask Mr as follows:

Mr(p) =

{
1 ‖Ar(p)‖ ≥ tmask,
0 otherwise.

(4)

A(M) is a function that computes the area of a binary mask M. T (M, t) is a
function that translates a binary mask M using t. Let Vi and MVi denote the
first frame of the i-th video in the database and the binary mask representing
the water parts in the frame, respectively.

We define the second criterion Sfeature that the appearance of the input
image and the video should be similar as follows:

Sfeature(p, i, t) = sfeature(f(p, I), f(p− t,Vi)). (5)

The function f is a SIFT feature descriptor [18]: f(p, I) computes the feature
vector of I at the pixel position p. Given a pair of feature vectors, sfeature

computes the similarity between the appearances.
We define the third criterion of similarity of the flow directions Sflow as

follows:

Sflow(p, i, t) = sflow(F(p),FVi(p− t)). (6)

Let F denote the flow field made from the user-specfied flow directions, and
let FVi denote the average flow field through video frames. Given a pair of 2D
vectors for the flow directions, sflow computes the similarity between them.

We define the fourth criterion about motion of water Smotion as follows:

Smotion(p, i, t) = smotion(mp(I),mp−t(Vi)). (7)

mp(I) represents a function that estimates the motion of I at the pixel po-
sition p. Note that mp(I) represents fluid motions that cannot be described
by F(p). F(p) represents only flow directions, but fluid motions involve the
other elements like flow speeds, variances, and frequencies of appearing and
disappearing water drops, etc. Here, we let mp(I) denote all these elements.

We define Smask as follows:

Smask(p, i, t) = Mr(p)MVi(p− t), (8)
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which guarantees that similarity measurements are performed within the masks.

The direct maximization of S is difficult: it is possible to compute Soverlap,
Sfeature, Sflow, and Smask, because all the functions in them are well-defined
and all the required information is provided as the user’s inputs; however, the
function m in Smotion, which estimates the fluid motion only from a single
image, is unknown and difficult to implement. Therefore, our strategy for
maximizing S is to compute S′, which consists of Soverlap, Sfeature, Sflow, and
Smask, for all the possibilities of i and t. We then show the user the candidate
animations, i.e., a set of animations made using the i-th video translated by
t that gives high similarity values of S′. We complete the maximization of S
by asking the user to select the animation, where the user feels that Smotion

is maximized, i.e., the fluid motion of the animation is best matched to the
fluid motion expected from the input image.

Note that our purpose is to create animations such as the waterfall in
Figure 4, which have time-varying appearance but roughly stationary temporal
dynamics [4]. Since the overall appearance of such a scene does not change
dramatically with time, we can use a single representative image to describe
the appearance of a video.

Both Soverlap and Smask are required in Eqs. 1– 2. These two terms may
look redundant: these are similar in the sense that both compute the overlap
between the input image and a video. However, these are different: Soverlap

computes the overlapping area, and Eq. 2 computes the number of pixels
satisfying the criteria. In other words, when multiple pairs of i and t give the
same value of Eq. 2, we want to create animations using pairs that give a
larger overlap of Soverlap.

3.2 Video database

We gathered 202 videos of water scenes filmed at various locations in the real
world, e.g., from Niagara Falls to unknown small cascades. The resolution of
each video in the database is 1280× 720 pixels. Thumbnails of all our videos
are included in the supplementary material. In each video, the camera is fixed
and focused on the water itself, and no other significant moving objects exists
other than the water itself. We prepared the horizontally flipped version of
each video to double the number of videos without any loss of the quality of
the database. Given the database of videos, we compute the flow field FVi ,
the mask MVi , and the alpha matte Ai,t for the i-th video in the database.

We apply the optical flow method [30] to each pair of neighboring video
frames to compute the 2D velocity vector at each pixel. Since the optical flow
method often gives noisy or erroneous velocities, especially for fast running
water, we take the average of velocities at each pixel through the duration
of 30 video frames, to obtain a smooth flow field FVi . Since the videos in
the database and also our target animation are roughly stationary temporal
dynamics [4] whose overall appearance does not change dramatically with
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time, we assume that such a short video clip as 30 video frames are enough to
estimate good average velocities in a video.

Since we want to create an animation using only water but not other ob-
jects, e.g., rocks and trees around the water, we compute the mask MVi to
extract the water parts. Since no significantly moving objects exists other than
water in each video, we can make the mask based on the magnitude of the
flow field:

MVi(p) =

{
1 ‖FVi(p)‖ ≥ tmask,
0 otherwise,

(9)

where we use 2.0 for tmask in all our experiments. Figure 5 shows a video and
its mask.

Fig. 5 (a) A video frame. (b) The mask MVi .

We compute the alpha matte Ai,t for the t-th video frame, which is used
during the animation synthesis (Section 3.4). We compute the alpha matte
based on a color histogram model [24]. Let P denote the set of pixels positions
p where MVi(p) is one. Let P denote the set of the other pixel positions. We
assume that P represents the water parts and P represents the other objects
around the water. We compute a color histogram for P and P . Each pixel in a
video frame has a color, i.e., a three-dimensional (3D) red-green-blue (RGB)
vector c = (cr, cg, cb), where the range of each element is 0 ≤ c < 256. We map
c to the bin of a color histogram of B3 dimensions using the following function:
b(c) = (b cr

256/B c, b
cg

256/B c, b
cb

256/B c). We compute the color histogram through

all the video frames: let HP and HP denote the color histograms computed
using the set of pixel positions P and P respectively. Finally, we compute

the alpha matte Ai,t as the probability: Ai,t(x) = HP (b(c))
HP (b(c))+HP (b(c)) , where x

represents the pixel position with color c. Figure 6-b shows the resulting alpha
matte, where the details around the boundaries are successfully captured. We
use 4 for B in all our experiments.

3.3 Video retrieval

We find the set of i and t that gives a high similarity value of S′. Our strategy
is an exhaustive search. We evaluate S′ for all the possibilities of i and t.
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Fig. 6 (a) A video frame. (b) Our alpha matte.

We first consider feature points in regular grids of the input image and
also the video (Figure 7). The intervals between adjacent feature points are 16
pixels in all our experiments. We introduce these sparse regular grids, because
we want to retrieve videos not by exact but by rough feature matching: please
note that our purpose is not to reproduce the ground truth motion from a
single image but to create an animation using the input image as a reference.
As shown in Figure 7, we consider feature points only at x, where Mr(x) or
MVi(x) is one. Therefore, since we consider these feature points and also,
from now on, the translation t with a 16 pixel interval, we assume that the
term of Smask has already been maximized. The evaluation of Soverlap is the
same as counting the number of feature points x that satisfy both Mr(x) and
T (MVi , t)(x) are one.

Fig. 7 We consider feature points in sparse regular grids.

As for the second criterion Sfeature, we consider an image patch of 64×64
pixels around each feature point. Our image feature is based on a histogram of
the image gradients, which is similar to the feature description by a scale-
invariant feature transform (SIFT) without the scale and rotation invari-
ance [18]: we divide a image patch into 4×4 blocks and compute the histogram
of the image gradients with 8 bins corresponding to 8 directions. The result-
ing 128 dimensional feature vector is normalized so that the summation of all
bins is equal to 1.0. Given a pair of feature vectors, f I and fV, our similarity
function in sfeature is as follows:

sfeature(f I, fV) =

{
1 ‖f I − fV‖ < tfeature,

0 otherwise,
(10)

where we use 0.08 for tfeature in all our experiments.
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As for the third criterion Sflow, we compare the flow directions at corre-
sponding pixels in the input image and the video. As for the input image, the
user sketches the desired flow directions sparsely (Figure 2-rightmost). There-
fore, we compute a dense flow field by interpolating the sparse information.
The flow directions are specified along the user-drawn arrows, we interpolate
them to obtain F using the radial basis function φ(x) = |x| [23]: we interpolate
the x- and y-components of the flow directions separately. As for the video,
we use the flow field FVi . Given a pair of 2D flow direction vectors, dI and
dV, our similarity function in sflow is as follows:

sflow(dI,dV) =

{
1 |dI·dV|

|dI||dV| > tflow,

0 otherwise,
(11)

where we use cos(π6 ) for tflow in all our experiments.
We rely on the user’s sketch to obtain the water flow directions of an input

image, because automatic estimation of them is difficult. For example, analy-
sis of image structure tensor allows us to obtain not flow directions but only
directions of image edges: even if it is possible to automatically estimate that
there is a horizontally flowing river in an image, but it is difficult to know
that the river flows toward the left or the right by such a simple image analy-
sis. Since automatic estimation of flow directions requires high-level semantic
image analysis, we choose a simple approach of user’s sketch.

3.4 Video synthesis

We create an animation of composite of the input image and the retrieved
videos. The problem we have to solve is how to combine all the appearances
of the mage and the videos. Let Ri,t denote the frame of the final animation,
which is initialized by the input image, i.e., Ri,t = I for all the t-th video
frame.

Motion in a typical water scene, e.g., waterfalls and rivers, has roughly
stationary temporal dynamics: the overall appearance and overall shape of
water do not change dramatically but small details such as water splashes are
moving. Our solution is to create the overall appearance and overall shape
of the animation using the low frequency component of the input image and
move small details using the high frequency component of the videos. Figure 8
shows the process. We apply Gaussian blur to the input image I (Figure 8-a)
and obtain a blurry image IB (Figure 8-b) that represents the low frequency
component: let sI denote the size of the Gaussian kernel. We also apply Gaus-
sian blur to the t-th video frame Vi,t (Figure 8-d) and obtain a blurry version
VB
i,t (Figure 8-e): let sV denote the size of the Gaussian kernel. We obtain

the high frequency residuals VR
i,t (Figure 8-f) by the following subtraction:

VR
i,t = Vi,t − VB

i,t. We make the composite VC
i,t by the following addition:

VC
i,t(p) = IB(p) +VR

i,t(p− t). This method is simple but powerful to success-
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fully make the realistic composite of the input image and the video. We use
15 and 63 for sI and sV respectively in all our experiments.

Fig. 8 The process of making the composite of the input image and the video.

Finally, we extract the region of interest from VC
i,t and make the composite

with Ri,t. We make the alpha matte A′i,t as the following multiplication:
A′i,t(p) = Ar(p)Ai,t(p − t). We then update the animation by applying
alpha blending: Ri,t(p) = VC

i,t(p)A′i,t(p) + Ri,t(p)(1 −A′i,t(p)). Figure 8-c
shows the resulting composite, where the alpha matte is also applied to affect
only the waterfall region. We repeat the process for all the regions of interest
in the input image.

Smooth transition between neighboring regions is dependent on the three
factors: 1) smooth boundaries of the user-specified alpha mask Ar, 2) the
success of the video retrieval, and 3) manual selection of videos by the user.
We expect that the user paints the alpha mask using brush tools in a stan-
dard image editing software, i.e., the region of interest Ar has smooth, blurry
boundaries as shown in Fig. 2 or Fig. 4. We can expect that the video retrieval
described in Sec. 3.3 successfully retrieves videos whose appearance and mo-
tion are consistent with the input image and user’s sketch. We also expect
that the user has chosen an appropriate set of videos for all the regions dur-
ing the manual selection described in Sec. 3 (Fig. 3). Given appropriate alpha
masks and videos, the simple equations described above successfully synthe-
size natural animations with smooth transitions between neighboring regions.

The animation made by the method described above usually looks reason-
able but sometimes looks different from the input image. In such a case, we
allow the user to apply appearance transfer from the input image to each video
frame. Our appearance transfer is the same as the previous method by Ok-
abe el al. [20]. We divide the image space into rectangular patches, where the
half part of each patch overlaps its neighboring patch. We apply the texture
synthesis method [7] between corresponding patches in the input image and
the video frame. We combine all the patches taking weighted average with the
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Fig. 9 Effects of appearance transfer.

weight defined by a Gaussian kernel. Figure 9 shows the effects of appearance
transfer: the appearances of color and textures become more similar to the
input image.

4 Results and discussion

Figure 15 shows video frames of eleven animation produced by using our
method. All the results made using a single photograph (Figure 15-a to 15-i)
are 640 × 480 pixel resolution. Figure 15-j and 15-k, which are oil paintings
of Jacob van Ruisdael in the 17th century, are 680× 878 pixel resolution and
990× 704 pixel resolution, respectively.

Given an input image, we start to create the animation by specifying rough
alpha masks of regions of interest using Adobe Photoshop CC 2014, where we
make a layer for each region of interest and paint it using a standard brush. We
then specify flow directions using our interactive tool, where the user sketches
strokes over the input image. We usually spend only several minutes to specify
rough alpha masks and flow directions.

Our system then retrieves videos for each region of interest: for each i-
th video in the database, our system finds the translation t that gives the
highest S′, which will be used to create the candidate animation. We use 15
computers, which consist of 100 cores in total, and it takes less than one minute
to finish the video retrieval in all our experiments. We simply parallelize the
computation of S′ for each video in the database.

Our system then renders 16 candidate animations for currently selected
region of interest and shows them in 4×4 grids: the animations are placed from
top-left to bottom-right in the order of the similarity value S′. The duration
of each candidate animation is 24 frames. The user observes each of them
and select what the user feels the best animation. When the user feels that
speeds of water flow in candidate animations are too fast or too slow, the user
can specify the upper or lower limit of the speed. The system then updates
candidate animations using only the retrieved videos whose average speed in
the region is within the limits. When the user finishes the selection for a region
and goes to the next region, the system updates candidate animations. These
updates of candidate animations spend just several seconds, because they do
not affect the computation of S′. On the other hand, when the user modifies
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alpha masks or flow directions, the system requires recalculation of S′ and the
user has to wait for less than one minute again.

Figure 10 shows a frame of the animation made from the oil painting
(Fig. 15-k) with the retrieved video for each region. Although the lighting
conditions and colors are different between the oil painting and each video,
our simple two-band blending (Sec. 3.4) successfully synthesizes the final ani-
mation. Watch the actual animation in the supplementary video.

Fig. 10 A frame of the resulting animation with the retrieved videos.

After selecting candidate animations for all regions, the system renders the
final animation having a larger number of frames. At this stage, we sometimes
need to refine the alpha masks. Especially, we modified alpha masks around
rocks and trees to keep the depth-order relations in the animation.

We applied the appearance transfer described in Sec. 3.4 to the results of
oil paintings. We did not apply it to the results of photographs: as shown in
Fig. 15, photographs of a water scene are usually taken with a slow shutter
speed, which results in a beautiful but blurry look. We did not apply the
appearance transfer not to transfer the blurry appearance to the resulting
animation.

4.1 Subjective evaluation

We performed a subjective evaluation of the visual quality of the resulting an-
imations. The subjects are thirteen students who major in computer science
and do not know our research project. We presented the eleven animations
(Figure 15). We asked each subject to “rank the visual quality of each anima-
tion on a scale ranging from 1 (poorest) to 5 (best)”. We also asked to “write
a short comment for each animation about visible artifacts, when they were
found”.
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Fig. 11 The result of the subjective evaluation. Each bar represents the average score of
visual quality. Each error bar represents the standard deviation. The previous method [21]
presents the animations of Figure 15-e and 15-k, which we call e’ and k’ here.

The results are shown in Figure 11. The highest average score is assigned
to Figure 15-g: multiple subjects wrote comments saying “natural” or “beau-
tiful”. The lowest average score is assigned to Figure 15-c: according to the
comments, one major reason of low scores is visible block noises, which we can
also find in the original retrieved video. All the results of Figure 15, which are
used for the subjective evaluation, and the retrieved videos are shown in the
supplementary video.

The observers often pointed out the blurriness in the results, e.g., the water-
fall in Fig. 15-a. One reason of this blurriness is our two-scale decomposition:
we extracted high frequency residuals from videos using the same Gaussian
kernel whose size is fixed to sV in all our experiments (Sec. 3.4). However, ide-
ally, this kernel size should be adaptively changed according to the dominant
spatial frequency at each pixel position of a video. We want to investigate this
adaptive Gaussian kernel it in the future, where multi-scale analysis/synthesis
may give a good solution.

4.2 Comparison

We compare the results of our method with the results of the previous method [21].
The previous method presents the animations of Figure 15-e and 15-k, which
we call e’ and k’. We also asked each subject to evaluate them. We obtained
the original videos of e’ and k’ from the authors of the previous method [21].
Since the resolution of each result of the previous method was low, we scale
it up so that the size becomes the same as our result, and we then show it
to subjects. The results are shown as the blue bars in Figure 11. Compared
with e and e’, the score of our method is higher, which shows that our method
enables to create the animation from the same image with higher visual qual-
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ity. Compared with k and k’, the score of our method is slightly higher but
almost comparable: since multiple subjects reported in their comments that
the resolution of k’ is low or k’ looks blurry compared with our result k, we
believe that our result k has better visual quality than k’ ; however, since sub-
jects seemed not to feel unconfortable about the blurriness, the average score
of k’ did not become low.

We describe the similar and different components of our method compared
with the previous method [21]. We construct the database of fluid videos, but
the previous method constructs the database of video patches. We retrieve a
video for each region of interest, but the previous method retrieves a video
patch at each grid point in the input image. The methods of video synthesis
are relatively similar: both methods extract high frequency components from
each video frame, which are added to the blurred version of the input image.
However, while our method applies a large Gaussian kernel to obtain low
frequency components (Sec. 3.4), the previous method averages video frames
to obtain it. Since such an average image often has a significant amount of high
frequency components, the extracted high frequency components look blurry
compared with the ones extracted by our method. The appearance transfer
described in the last paragraph in Sec. 3.4 is almost the same as the one used
in the previous method.

Given an input image, masks, and flow directions, the previous method
spent about one hour to create the first animation. On the other hand, our
method spends less than one minute. Also, our method enables the user to
interactively design the animation by controlling the speed and selecting the
best animation from a variety of candidate animations.

It is not easy to create the higher resolution video using the previous
method. Figure 12-left shows a frame of k’, which is 389 × 165, i.e., about
half resolution of our result. Figure 12-right shows the corresponding retrieved
video patches assigned over the image space. We see various video patches
from different videos: the waterfall part consists of different waterfall videos;
the river part also consists of various river videos and there is no consistency
of water flow between neighboring video patches. When we apply the previ-
ous method to create a higher resolution video, these inconsistencies show up
as significant visible artifacts. Also, a pair of neighboring video patches are
overlapped with each other by their half area: they are merged by a smooth
blending method during the video synthesis, which decreases the original sharp
appearance of each video patch and causes the blurriness. On the other hand,
our method produces consistent water flows over each region and enables the
creation of higher resolution videos. Figure 13 shows a frame from the anima-
tion of our method (left), and assignment of retrieved videos (right).

4.3 Failure cases

Figure 14 shows the input images of typical failure cases. Figure 14-a has the
large white part where water bubbles seem to appear. This part is expected
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Fig. 12 A frame from the animation of the previous method [21] (left), and its patch-based
video retrieval and assignment (right).

Fig. 13 A frame from the animation of our method (left), and its video retrieval and
assignment (right). The retrieved videos are shown in Fig. 10.

to move dynamically. However, they look static under the flowing water in
the result. Since the retrieved video does not have such bubbles, our method
could not produce dynamic motion in the part. Figure 14-b has small cascades
behind the large waterfalls. The waterfalls move but the cascades look static,
because the retrieved video has waterfalls without cascades behind.

Fig. 14 Typical failure cases.

5 Limitations and future work

Various types of fluids We have presented animations of only water scenes, but
we want to extend our method for animations of fire and smoke in the future.
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Fig. 15 Each pair of images shows the input image (left), alpha masks specifying regions of
interest (right), and user-specified flow directions (arrows on the input image). Actual alpha
masks are grayscale images, but we visualize all of them in a single image using different
colors. We also show the number of user-specified regions of interest on the image of colored
alpha masks.

We currently synthesize an animation as the combination of low frequency
component of the input image and high frequency component of the video.
However, we cannot use it for dynamic fire and smoke scenes, because low
frequency component should also move dynamically in them: for example, the
boundaries of fire and smoke would change their shapes with time. We want to
investigate the algorithm for animation synthesis that can treat such dynamic
motions.

More intelligent system We currently compute S′ for all the possibilities of
the index of the video and translations. We can extend our method to take
more variations into account, e.g., not only translations but also rotations
and scales. We may also take not only spatial but also temporal variations
by applying time warping, when the retrieved videos are too fast or too slow.
We may also extend our method so that it takes variations of alpha masks
into account, where the user specifies only a single alpha mask and the sys-
tem automatically proposes reasonable divisions of it. We may also cope with
techniques of semantic scene understanding, which automatically finds fluid
parts and their properties in a single image. We investigate such possibilities
and techniques to further reduce the user’s burden.

Transformations of videos During the video retrieval described in Sec. 3.3, we
don’t take into account of any transformation of videos in the database, e.g.,
rotation, scaling, etc. We have not observed any artifacts caused by this so far,
but such transformations may improve the efficiency of the video retrieval and
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the quality of final animations in exchange for the increase of computational
cost. We want to investigate transformations of videos in our future work.

Infinite loop videos It would make sense to incorporate one of the previous
methods [25,2,15] to create an infinite loop video of a water animation, which
is also our future work.
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