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Abstract

We propose a system that allows the user to design a continuous flow animation starting from a still fluid image.
The basic idea is to apply the fluid motion extracted from a video example to the target image. The system first
decomposes the video example into three components, an average image, a flow field and residuals. The user
then specifies equivalent information over the target image. The user manually paints the rough flow field, and
the system automatically refines it using the estimated gradients of the target image. The user semi-automatically
transfers the residuals onto the target image. The system then approximates the average image and synthesizes
an animation on the target image by adding the transferred residuals and warping them according to the user-
specified flow field. Finally, the system adjusts the appearance of the resulting animation by applying histogram
matching. We designed animations of various pictures, such as rivers, waterfalls, fires, and smoke.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.6]: Methodology and
Techniques—Interaction techniques—; Image Processing and Computer Vision [[.4.8]: Scene Analysis—
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Motion—;

1. Introduction

Contemplating a photo or painting of natural scene, we of-
ten imagine how the scene in the image would appear an-
imated. Several papers discussed how to animate such still
images [FAH91,LW94,BC02,CGZ*05,IMHO05], but animat-
ing fluids in a still image remains a great challenge. This is
also one of the practical demands commonly desired in the
digital image industries. For example, in a cartoon animation
or even in a live action film, fluid scene images are often used
as the background of moving characters. The background
should then be animated as well, to make the whole scene
more dramatic or impressive, but this may not be feasible if
the creation of the animated background is demanding.

There are two major methods for creating a flow anima-
tion: one is a fluid simulator, and the other is editing ex-
isting videos. Fluid simulators allow users to create a wide
variety of fluids [FM96, FFO1]. Several methods also al-
low users to specity keyframes [TMPS03, MTPS04]. How-
ever, since these methods are computationally expensive and
have many parameters to be set appropriately, even experi-
enced designers must spend considerable time by trial and
error to achieve satisfactory results. The other method is to
copy and paste existing video fragments into the target im-
age. However, available videos do not always match the ap-
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pearance of the target image. Video texture synthesis meth-
ods are another possibility [SSSE00, WLO0O, BIEYLWOI,
DCWS03, WZ03, BSHK04, KEBK05, LWW*07, NKL*07],
but no existing method has successfully synthesized a con-
tinuous flow animation in a given still fluid image while pre-
serving the overall appearance.

We propose a system that allows the user to design a con-
tinuous flow animation starting from a fluid picture (Fig. 1).
Given a target image, the user gives the system three in-
puts. First, the user selects a video example that specifies
the desired fluid motion. Second, the user manually paints
a rough flow field that is automatically refined using the es-
timated gradients of the target image. Last, the user semi-
automatically transfers high-frequency fluid features from
the video example to the target image. With our system and a
library of video examples containing typical fluid sequences,
one can quickly add reasonable motion to a fluid in an image
without using a complicated fluid simulation.

Our technical contribution is in the way we apply the fluid
motion from a video example to the target image. Continu-
ous flow animation has roughly stationary temporal dynam-
ics [DCWSO03,BSHKO04], and we assume that the velocity at
a single fixed point of our target animations is constant over
time. Based on this assumption, our system first decomposes
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Figure 1: Our system allows the user to design a continuous flow animation starting from a fluid picture by semi-automatically
applying the fluid motion extracted from the video example. The left example animates a campfire in our artist’s painting using
a fire video. The right example animates a water surface in Johannes Vermeer’s painting using an ocean video.

the video example into three components, an average image,
a flow field, and residuals. The flow field is obtained as an
average of optical flows computed by comparing neighbor-
ing frame pairs. The residuals are obtained as differential im-
ages between the original frames and corresponding warped
frames, representing non-translational high-frequency infor-
mation. After refining the flow field and transferring the
residuals onto the target image, the system then approxi-
mates the average image and synthesizes an animation by
adding the transferred residuals and warping them accord-
ing to the designed flow field. Finally, the system applies
histogram matching to preserve the original appearance of
the target image.

Our main contribution is the overall design of the method
based on three assumptions: first, a human can easily imag-
ine a rough motion in a fluid picture, second, a human can
also easily find a video example with a similar motion to
the fluid picture, and last, the computer can automatically
integrate the user-specified rough hints to synthesize a flow
animation in the fluid picture. Based on these notions, we
provide user interfaces to efficiently specify decomposed in-
formation of continuous flow animation over the target im-
age. Our approach allows an appearance-based design pro-
cess and makes the authoring of flow animation accessible
to non-professional users. Our system can also be a power-
ful authoring tool for a professional designer who wants to
specify every detail of the motion.

2. Previous Work

Many methods have been proposed for the creation of ani-
mations from a single image. Freeman et al. proposed “Mo-
tion without Movement,” where the user can create the illu-
sion of motion in a single image [FAH91]. Litwinowicz and
Williams’s method allows the user to create two-dimensional
(2D) animations using line drawings for image deformation
as keyframes [LW94]. Barrett and Cheney proposed an inte-
grated system to edit 2D single images, which enables the
user to create 2D animations [BCO02]. Igarashi et al. pro-
posed an interactive image manipulation method that en-
ables the user to create 2D animations interactively by op-
erating user-specified handles [IMHO5]. These methods are
useful for creating 2D character animations but 2D fluid an-

imations are out of their focuses. Chuang et al. proposed a
method to synthesize a video with stochastic motions from a
single image [CGZ*05]. This method addresses the problem
of animating single images representing natural phenomena
but supports not flowing fluid animation but only oscillation
of water surface like ripple.

Video texture synthesis has also been well-explored.
Wei and Levoy proposed a fast non-parametric algorithm
to synthesize three-dimensional (3D) spatial-temporal vol-
umes [WLO00]. Bar-Joseph et al. proposed a stochastic algo-
rithm to synthesize a video sequence using multi-resolution
analysis [BJEYLWOL1]. To create long videos from short
clips, the video texture method concatenates appropriately
chosen subsequences [SSSE00], and the dynamic texture
method uses autoregressive filters [DCWS03]. These meth-
ods enable the user to extend an existing video spatially and
temporally. However, it is difficult for the user to modify the
appearance or motion of the synthesized video. Wang and
Zhu analyzed fluid animation and represented it with textons
to synthesize video sequences [WZ03]. Bhat et al. proposed
a sketching interface and an algorithm to synthesize a fluid
animation from a video example [BSHKO04], where the user
can also change the appearance of the fluid. However, the
problem of animating a fluid picture has not been addressed.
Kwatra et al. proposed a method to design a texture ani-
mation flowing over a user-specified flow field [KREBKO05].
Narain et al. transferred video textures to 3D fluid surfaces
or other video sequences [NKL*07]. These methods enable
the user to modify the existing video and create a novel fluid
animation, although they do not allow the user to specify an
appearance constraint using a single image. Hashimoto et
al. extended the image analogies technique [HJO*01] for
example-based video filtering [HINO3]. This method ad-
dresses the problem of designing the appearance of a video
sequence using example still images. In contrast, our goal is
to design the motion of still images using video examples.
Lin et al. proposed a method to produce an animation from
not single but multiple high resolution stills [LWW™*07].
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Figure 2: System overview. Green arrows represent input and output of our system. The video example (a) is decomposed
into the average image (b) and the differences between the original frames and the average image (c). The differences are then
decomposed into the flow field (d) and the residuals (e). The user semi-automatically designs the flow field (f) and transfers the
residuals (g). The system then computes the approximated average image (h) by applying motion blur to the target image, an
cutout from Thomas Moran’s painting (j). The synthesized differences (i) are computed by combining the designed flow field
and transferred residuals. Finally, to preserve the original appearance of the target image (j), the system applies histogram

matching (dashed line) to compose the final flow animation (k).

3. System Overview

We give an overview of the process of designing a flow ani-
mation. We then describe the two important processes of our
approach, flow field design and transfer of residuals.

Fig. 2 presents the system overview. Given the target im-
age (Fig. 2-j), a video example whose fluid motion the user
wants to apply to the target image must be selected (Fig. 2-
a)). The analysis of the video example is performed (Sec-
tion 4) . The video example is first decomposed into the av-
erage image through all the frames (Fig. 2-b) and the dif-
ferences between the original frames and the average im-
age (Fig. 2-¢). The differences are then decomposed into
the flow field (Fig. 2-d) and the residuals (Fig. 2-e). Since
we assume our target animations have stationary temporal
dynamics, the flow field is obtained as an average of opti-
cal flows computed by comparing neighboring frame pairs.
The residuals are obtained as differential images between
the original frames and corresponding warped frames ac-
cording to the flow field. Given the decomposed informa-
tion, the user then semi-automatically specifies equivalent
information over the target image (Section 5). The user man-
ually designs the rough flow field in the target image by
painting strokes, which is then refined automatically using
the estimated gradients of the target image (Fig. 2-f, Sec-
tion 3.1). Our system automatically transfers the residuals
according to an assumption that small patches having simi-
lar flow fields would have similar residuals, and the user can
also transfer the residuals manually by painting operations
(Fig. 2-g, Section 3.2). The approximated average image is
then obtained by applying motion-blur to the target image
using the designed flow field (Fig. 2-h). The system adds the
transferred residuals and warps them according to the de-
signed flow field to synthesize the differences (Fig. 2-i). The
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system then combines the approximated average image and
the synthesized differences to give an animation. Finally, to
preserve the original appearance of the target image (Fig. 2-
j), the system applies histogram matching to the animation
to synthesize the resulting flow animation (Fig. 2-k). When
the target image has multiple fluids and other still objects, an
alpha matte is required to extract fluid parts from the scene.

The decomposition of flow animation into three design
factors is our key idea that allows the user an efficient and
intuitive design process. First, the extraction of the average
image enables to easily replace the overall appearance of a
flow animation. The flow field is an important characteristic
of a flow animation and its extraction as a design factor is
essential. Finally, the extraction of residuals allows the user
to transfer desired small fluid features of a video example
efficiently. The residuals contain only the non-translational
high-frequency information that the flow field cannot cap-
ture, such as water drops that suddenly appear or disap-
pear. An expert user of a video authoring tool may copy
small patches of a video example without any decomposi-
tion, paste them onto the target image, and adjust their ap-
pearances. However, adjustment of appearance is a difficult
task. Moreover, such naive cut and paste cause visible dis-
continuities between patches, because each patch has inde-
pendent fluid features. On the other hand, since our decom-
position allows such naive cut and paste on the residuals, we
provide intuitive tools to transfer the residuals (Section 3.2).

Bhat ez al. decomposed a flow animation into two com-
ponents, flow field along user-specified strokes and particles
of video textures, which allow to edit an existing video effi-
ciently . The particles possess small fluid features and play
a similar role to our residuals. The difference is the particles
move along the flow field but our residuals are stationary.
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Figure 3: Designing a rough flow field by painting. (a)
Strokes of Orientation Brush and Speed Brush are green and
yellow respectively. Dark strokes are painted in local mode.
(b) The designed orientation component is visualized using
Line Integral Convolution. (c) The designed speed compo-
nent is visualized with faster motion having brighter colors.

3.1. Flow Field Design

Flow field design consists of two processes: manual design
of rough flow field and its automatic refinement. The man-
ual design process allows the user to paint the flow field
roughly. The automatic process refines the flow field using
the estimated gradients of the target image. Since image gra-
dients don’t always hold correct information of our target
flow field, we propose the semi-automatic method that al-
lows the user to design a complex flow field efficiently.

To make the manual design process intuitive, we decom-
pose the flow field into orientation and speed components
and provide a separate brush for each of them (Orientation
Brush and Speed Brush). Orientation Brush assigns an orien-
tation vector to each pixel under the brush stroke. The orien-
tation vector is tangential to the stroke. To intuitively specify
a speed value with Speed Brush, the user can fetch the speed
value from the video example. The sparsely painted orienta-
tions and speeds (shown as bright green and yellow strokes
in Fig. 3-a) are interpolated over the target image. The user
can also edit the flow field locally. A brush stroke painted
in local mode (shown as dark green and yellow strokes in
Fig. 3-a) affects its nearby pixels [SWHS97] and its effect is
controlled by brush size and alpha parameters. Fig. 3-b and
¢ show each component of the designed flow field.

3.2. Transfer of Residuals

Automatic Transfer of Residuals. The system can auto-
matically transfer residuals of the video example to the tar-
get image. We assume that when a small patch of the target
image has a similar flow field to a patch of the video exam-
ple, both patches have similar residuals. For each patch of
the target image, we perform the best match search between
the flow fields of the video example and the target image
(Fig. 4). The system then copies fragments of residuals. The
user specifies the patch size and runs several seconds of the
process. The patch size is typically from 8 x 8 to 32 x 32 pix-
els. Automatic transfer is useful for inexperienced users who
want to obtain quick results with minimum intervention.

Figure 4: Best match search between the flow fields of the
video example (left) and the target image (right).

Manual Transfer of Residuals. We provide a Clone Brush
to manually transfer residuals. Using the Clone Brush, the
user draws a source stroke on the video example and a des-
tination stroke on the target image. The system cuts out the
residuals around the source stroke and pastes them around
the destination stroke. The system deforms the transferred
region so that the source stroke fits to the destination stroke.
Brush size and alpha parameters are used to control the ef-
fect of the Clone Brush on the underlying residuals. Manual
transfer is useful for expert users who want to control details.

4. Video Analysis

In this section, we describe the algorithms to analyze a video
example and decompose it into three components of an av-
erage image, a flow field and residuals (Fig. 5).

4.1. Average Image

We first average all the frames of the video example as
A= % Z?; 61 F;, where F; are the frame of the video example
and N is its number (Fig. 5-a and b). We then compute the
differences as D; = F; — A (Fig. 5-¢).

4.2, Flow Field

The flow field is obtained as an average of optical flows
computed by comparing neighboring frame pairs of the
differences D. An optical flow is computed by using the
Lucas-Kanade method with an image-pyramid representa-
tion [LK81, Bou99]. It takes frame D; and the following
frame D;; as input and generates a vector field. The method
has two steps, feature extraction and optical flow computa-
tion. Each step has an open parameter, the number of fea-
tures and the window size. We set the number of features
to 100 and the window size to 10. The computed optical
flow is sparse, and only the feature points have velocities
(Fig. 5-d). To obtain a continuous optical flow, we interpo-
late them over the image space using radial basis function
O(x) = |x| [PFHOO]. Finally, we average the optical flows
through all the frames to obtain the flow field (Fig. 5-e).

4.3. Warping Function

We define the warping function W that takes an image / and
warps it according to the flow field. The warped image is
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Figure 5: Video analysis. For differences and residuals, we
visualize each image so that gray color represents zero val-
ues; darker pixels have negative values, and brighter pixels
have positive values.

denoted as W([). Our warping operation is based on back-
ward mapping. Let X = (x,y) be a position and p(X,i) be
the pixel value at X in i-th frame. Given a flow field defined
as ¥(X), each pixel value of the warped image is computed
as p(X,i) = p(X—¥(X),i — 1). In practice, this operation is
achieved by creating a regular triangular mesh over the im-
age space, deforming the mesh via v, and sampling the pixel
values of (i — 1)-th frame via barycentric coordinates.

4.4. Residuals

To analyze non-translational high frequency information, we
consider the differential image R; between the warped i-th
frame and the (i + 1)-th frame (Fig. 5-f):

Ri = Dig1 — W (D). M

4.5. Video Reconstruction

The flow field defines a velocity at each pixel, and the resid-
uals contain only the non-translational high-frequency in-
formation that the flow field cannot capture, such as wa-
ter drops that suddenly appear or disappear. Given the first
frame Dy, the warping function W, and the residuals R;,
the differences D; are reconstructed by rewriting Eq. 1 as
Diy1 = W(D;) + R;. We introduce a composite function W¢
of W and eliminate the recurrence.

wo) =1, )
W (1) = W o W™(1) n>0, (3
. i-1
Di =W (Do) + ¥ W (Ry). %)
k=0
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Eq. 4 means that the first frame and each residual affect all
the following frames. When 7 is large, we can ignore the ef-
fect of the first frame and very old residuals. We can limit
the life time of each residual with an open parameter t:

i-1
Di~ Y W Ry

k=i—1

T<i<N. Q)
Finally, the video example is reconstructed as follows:
T<i<N. (6

Eq. 6 means that we can synthesize a flow animation of the
target image in the same manner, by appropriately specifying
an average image, a warping function and residuals over the
target image. Since we have denoted the decomposed infor-
mation as A, W and R, we denote the specified information
asA', W' and R'.

5. Video Synthesis

In this section, we describe the algorithms for flow field de-
sign specifying W', the automatic and manual transfer of
residuals specifying R', the approximation of the average
image specifying A’, and the video reconstruction and his-
togram matching synthesizing the resulting flow animation.

5.1. Flow Field Design and Warping Function

As for manual design of rough flow field, Orientation Brush
and Speed Brush specify orientation vectors and speed val-
ues at pixels under each stroke. Given sparsely specified val-
ues, we interpolate them over the target image space using
the radial basis function ¢(x) = |x| [PFHOO]. For the ori-
entation vector, we interpolate x- and y-components sepa-
rately and normalize the vector at each pixel. In local mode,
we make a layer of interpolated values and an alpha matte
of user-specified brush size and alpha parameters for each
brush. We then integrate all the layers with alpha mattes to
give the rough flow field. We denote the rough orientation
and speed components as ®, and P (Fig. 3-b and c).

The automatic refinement of the flow field is inspired by
image-based non-photorealistic rendering method [HE04]
that estimates brush stroke orientations of painting based on
gradients in an input image. The automatic refinement pro-
cess begins by calculating the gradients of the target image.
The target image is blurred by a Gaussian kernel to remove
the noise, and the gradients G are then estimated with a So-
bel filter [FP02] (Fig. 6-a). We set the kernel size to 5 x 5 in
our experiments.

We compute the refined orientation component as ¥, so
that W, (X) is a unit vector parallel to G(X) and the dot prod-
uct Wo(X) - ®o(X) is larger than zero. Since ¥, is noisy
as an orientation field, we blur ¥, by the other Gaussian
kernel of width w and obtain a smooth orientation com-
ponent (Fig. 6-b). wy is an open parameter that controls
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Figure 6: Refinement of the flow field. (a) The estimated
gradients of the target image (Fig. 3-a). (b) Refined orienta-
tion component. (c¢) Refined speed component.

the sensitivity of the refined flow field to the image gra-
dients. We then compute the refined speed component as
Wi (X) = Wo(X) - Po(X) - Ds(X) (Fig. 6-¢). Our refined ori-
entation component is strongly dependent on G, and ¥, is
just used to determine its alternative directions. Our refined
speed component is determined so that gradients parallel to
the user-specified flow field keep their speeds, but gradients
orthogonal to it degrade their speeds. Finally, the corre-
sponding warping function W’ is defined based on the re-
fined flow field ¥, - ¥s.

5.2. Automatic Transfer of Residuals

We perform automatic transfer with respect to each rectan-
gular patch in the flow field over the target image by finding
the best matching exemplar window in the flow field over
the video example (Fig. 4). The same matches are used for
transferring all the frames of residuals to maintain tempo-
ral coherency. The best match search is a standard nearest-
neighbor search in a high-dimensional space. We accelerate
this step by using principle component analysis (PCA) and
approximated nearest neighbor method (ANN) [HIO*01].
Further acceleration is possible using down-sampled target
images and video examples. In our experiments, we reduced
the image resolution by two- or four-fold downsampling.
Since the patches on the target image overlap, we fill the
image space with representative patches in a Lapped Tex-
ture manner [PFHOO]. This method successfully preserves
the high-frequency features of transferred residuals. We first
sort all the patches according to their similarities; our sim-
ilarity measure is an L2-norm between the patch in the tar-
get image § and the patch in the video example € given as
|¥— 2. We then paste the patches in the sorted order. The
boundary of each patch is alpha masked and blended.

The automatic transfer is inspired by the idea of Image
Analogies [HIO*01]. We assume that the transferred resid-
uals relate to the designed flow field in the same way as the
original residuals relate to the average flow field of the video
example. This assumption is introduced to preserve the fluid
features of the original video example in the synthesized
differences. Otherwise, the residuals transferred randomly
without considering the relationship tend to cause random
noises in the synthesized differences.

1V Y Y v Y
V4 VA Y Y Ve v v v

Figure 7: Manual transfer of residuals using shape defor-
mation. (a) A triangular mesh and the source stroke on the
video example. (b) The destination stroke on the target im-
age. (¢) The deformed mesh over the target image.

5.3. Manual Transfer of Residuals

Manual transfer copies residuals from the region around a
source stroke to the region around a destination stroke. To
deform the region, we first create a triangular mesh over the
video example (Fig. 7-a). We then apply as-rigid-as-possible
shape deformation using the vertices of the source and desti-
nation strokes as positional constraints [IMHO5]. We transfer
residuals by sampling pixel values in the deformed mesh via
barycentric coordinates. The same mesh is used for trans-
ferring all the frames of residuals to maintain temporal co-
herency. We make an alpha matte of user-specified brush size
and alpha parameters to blend the transferred residuals with
underlying residuals.

5.4. Approximation of the Average Image

We first approximate the average image of the target flow
animation by applying image-based motion blur [BEO1] and
Gaussian blur to the target image. Fig. 8-a shows the target
image, and Fig. 8-b shows the target image motion-blurred
using the designed flow field. An open parameter to simulate
the shutter speed controls the effect of motion blur. Since
motion blur makes sharp edges along the flow field and they
will cause visible artifacts in the resulting flow animation,
we apply additional Gaussian blur and obtain the smoother
image (Fig. 8-¢). The width of Gaussian kernel wq is an open
parameter. We use the resulting image as the approximated
average image A'.

5.5. Video Reconstruction

Given the warping function of the designed flow field W',
and the transferred residuals Rf, we can reconstruct the dif-
ferences D} by introducing a composite function of W' as

’
W ¢ and the life time parameter T:

-1,
Di=Y wTRY). )

k=i—1
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@ (b)

Figure 8: Approximation of the average image. (a) The
target image. (b) The motion-blurred image with a shutter
speed set to 0.1 millisecond. (¢) The approximated average
image obtained by applying Gaussian-blur.

We then adjust the contrast and brightness of D} as
Di = (D —(D"))-a+B, ®)

where (D'} is the mean of all the pixel values of D', o and
[ are the contrast and brightness parameters. Let C the dif-
ference between the target image and the approximated av-
erage image A', since the differences D}’ should have the
same contrast and brightness as C, the brightness  is com-
puted as the mean of all the pixel values of C. The contrast
o is computed using the standard deviations of C and D' as
o=0¢/0p.

We then combine the approximated average image A’ and
the synthesized differences D/’ to give a flow animation as
F! = A" + D}'. When the video example has N frames, the
duration of the reconstructed animation is N — T frames,
since both the residuals R and the transferred residuals R’
have N — 1 frames and F; is computed from F{ to Fy,_;.

5.6. Histogram Matching

The reconstructed animation usually has blurred frames or
different appearance from the target image. We apply his-
togram matching to recover reduced contrast and original ap-
pearance of each frame. We use Heeger and Bergen’s texture
synthesis algorithm [HB95]. With this algorithm, we con-
struct steerable pyramids of both the target image and each
reconstructed frame. We then apply histogram matching to
histograms of steerable coefficients in each sub-band. This
process is repeated several times. Fig. 9-c shows the result of
this process. When we must preserve the original appearance
more locally, we divide the image space into grids and ap-
ply the process to each grid one by one, and combine all the
grids in the image space again. To remove visible disconti-
nuities between neighboring grids, we apply alpha blending
to their overlapping boundaries. Fig. 9-d shows the result.

We try to exploit the high frequency information of the
target image as much as possible by applying histogram
matching with grids. Because our approach uses a video ex-
ample, there is always a conflict between the high frequency
information from the target image and the video example.
Our method is designed so that both components are mixed
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Figure 9: Histogram matching to preserve the original ap-
pearance of the target image. (a) The target image. (b) The
reconstructed frame. (¢) The reduced contrast of the recon-
structed frame is recovered by histogram matching. (d) The
process is applied to each region in the orange grids (2x4)
to preserve the original appearance more locally.

Brook » Waterfall Smoke

Figure 10: Resulting flow animations.

in a balanced manner, by allowing the user to control the
number of histogram matching and the size of grids.

6. Results and Discussion

We applied our method to various types of fluid pictures.
Fig. 1 and Fig. 10 show several examples of the resulting
flow animations. Table 1 summarizes information related
to the results. The accompanying video shows long, natu-
ral, continuous flow animations without any noticeable short
loops or spatial discontinuities which are inevitable in the
naive cut and paste approach.

Given a target image and its alpha matte, we launch the
system and load them and the video example. We then start
to paint the rough flow field. As soon as each painting oper-
ation is performed, the system automatically refines the flow
field. We then transfer the residuals to the target image, and
synthesize the first short animation. Since histogram match-
ing with a steerable pyramid takes a long time, we adopt
the Laplacian pyramid that renders an animation favorable
as a preview. We apply histogram matching once for render-
ing the preview. We usually spend several minutes to create
this first result (note that the time for alpha matte creation
is ignored). If the result is unsatisfactory, we can go back
to the design process and fine-tune the result. “Water Sur-
face” in Johannes Vermeer’s painting (Fig. 1) is one of the
simplest examples, because its flow field does not have sig-
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nificant speeds. By preparing the video example of a real
ocean, we could design the animation by specifying a simple
flow field and transferring the residuals automatically. For
Johann Gottfried Steffan’s waterfall painting (“Waterfall” in
Fig. 10) and W W Stewart’s steam train painting (“Smoke”
in Fig. 10), we extracted each part from the target image and
designed the flow animation using a corresponding video ex-
ample respectively.

Making an Infinitely Flowing Animation. The duration
of the synthesized flow animation is normally dependent on
the duration of the video example. However, if the user can
prepare an infinitely flowing animation as a video exam-
ple [SSSE00, DCWS03, BSHK04], since the decomposed
residuals do not repeat either, the resulting flow animation
flows infinitely. For the river image shown in Fig. 2-j, we ap-
plied the video example of the other river that is synthesized
by Bhat et al. without a loop (courtesy Bhat ez al. ).

Flow Field Design. The river and waterfall animations usu-
ally have complex flow fields. Our painting interface and au-
tomatic refinement are especially useful for designing such
complex flow fields. As shown in Table 1, the numbers
of used Orientation and Speed Brushes are small compared
with the complexity of the target flow field. This is because
the automatic refinement process helps the user to design the
details of the target flow field efficiently. To create compara-
ble results without refinement, the user has to paint detailed
flow fields carefully using many brushes in local mode.

Transfer of Residuals. As shown in Table 1, since the au-
tomatic transfer based on the assumption of flow field simi-
larity works well for most cases, we did not use many Clone
Brushes. However, there are two cases where the manual
transfer is useful. One is the case where the designed flow
field is uniform and the automatic transfer synthesizes not
variational but flat residuals. The other is the case where the
video example has large features and the user wants to trans-
fer them. For “Smoke” example, we used Clone Brushes to
transfer large features of the video example.

Boundary Treatment. For the smoke and campfire anima-
tions, we paid much attention to boundary treatment. Smoke
and fire usually change their shape dramatically. However, it
is difficult to design a flow animation that has dynamic shape
boundaries using our system, because the overall shape of
the resulting animation is specified by the static approxi-
mated average image. Therefore, we need to carefully ap-
proximate the average image choosing appropriate param-
eters for motion-blur and Gaussian-blur. The alpha matte
for extracting fluid parts from the target image must also
be carefully designed. This is one of the limitations of our
current method.

Video Example as Design Factor. One of the interesting
aspects of our method is the video example being a de-
sign factor. We can design different flow animations from

(a) (b) (© (d)

Figure 11: Flow animation variations from the same target
image. For the different video examples (a) and (c), the cor-
responding synthesized animations (b) and (d) are created
by our method.

the same target image by applying different video examples.
Fig. 11 shows that frames synthesized using different video
examples have different appearances. For these frames, we
used 3x3 grids and applied histogram matching only once
to preserve the original fluid features of the video examples.

User Experience. We performed an informal user study to
investigate the usability of our system. The subjects were
five researchers in the computer science department who
were novice users of our system. We asked them to de-
sign flow animations by using Orientation Brushes, Speed
Brushes and adjusting the parameters of shutter speed and
wq for approximating the average image. The other parame-
ters are set to their default values: wy is 12, Tis 16, HM Grid
is proportional to the resolution, and HM Rep is 3. The target
image, its alpha matte and the video example were provided
by the authors. The subjects designed each animation watch-
ing its preview, and the final long sequences rendered off-
line by the authors were shown in the supplemental video.
Fig. 12 shows the thumbnails of the animations designed by
the users and the time to complete each animation.

During this informal study, we gave explanations and ad-
vices, when we found the test users required them. We also
asked them to give us feedback in real time during the de-
sign process. Design of orientation component seems intu-
itive even for novices, but as for speed component, the re-
lationship between a specified speed value and its effect in
the final animation seems difficult for novices to estimate.
The approximated average image and its related parame-
ters also seem not intuitive for them, until they experience
several times of trials and errors. However, of such difficul-
ties, the test users could design flow animations in relatively
short time as shown in Fig. 12 and the supplemental video.
Through this informal study, we have shown that it is possi-
ble even for the novices to create flow animations using our
system, after a certain amount of training.

Quality Discussion We have shown that our method en-
ables the user to create interesting fluid animations. How-

(© 2008 The Author(s)
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Scene Res OB | SB | CB | wy T | Sh(msec) | wq | HM Grid (x x y) | HM Rep
River 254 x 176 6 6 0 12 | 16 0.1 8 4%3 3
Campfire 360 x 480 6 3 2 40 | 16 0.4 16 4x4 3
Water Surface || 500 x 208 2 3 0 20 | 16 0.2 10 8x4 3
Brook 288 x 384 | 29 5 3 30 | 16 0.1 8 S5x7 3
Waterfall-T 405 %399 | 21 7 6 30 | 16 0.1 4 8x8 3
Waterfall-II 617 x224 | 10 5 2 30 | 16 0.2 8 10x4 3
Smoke-I 283 x 307 8 2 3 40 | 16 0.27 14 8x8 3
Smoke-II 236 x 314 8 2 11 30 | 16 0.33 14 4x7 3

Table 1:

“Res” shows the resolution of the resulting flow animation. “OB”, “SB” and “CB” count the numbers of used

Orientation Brushes, Speed Brushes and Clone Brushes. Each parenthetic number shows the number of brushes painted in
local mode. wy is the width of a Gaussian kernel for controlling the sensitivity of the refined flow field to the image gradients. T
is the life time for the video reconstruction. Sh and wq are the shutter speed and the width of a Gaussian kernel for approximating
the average image. “HM Grid” shows the grids dividing the image space for histogram matching. “HM Rep” shows the number
of iterations of histogram matching. “River” is shown in Fig. 2-j. “Camplfire” and “Water Surface” are shown in Fig. 1.

(¢) 11 min

(b) 17 min

(a) 7 min

Figure 12: User experience and editing time.

ever, there are noticeable artifacts found in some of the re-
sulting animations. We describe the quality problems here.

One of the problems is artifacts like shower door effect,
which are significantly seen in the fire animation of our user
experience (Fig. 12-a). Since the subject applied only a small
amount of blur to the average image, the original fire shapes
of the target image are stiffly preserved in the final anima-
tion. To prevent this problem, an adequate choice of a set of
blur parameters is important.

Another problem is the synthesized animation tends to
have viscosity higher than the video example has. Such arti-
facts are noticeable in “Brook” and the cascade animation of
our user experience (Fig. 12-b). There are three reasons. First
reason is histogram matching. When the target image has
an appearance smoother than the video example, histogram
matching reduces high frequency that the video example has.
Second reason is a roughly designed flow field. In “Brook”
animation, there are small fluid features around the center.
Since the flow field is roughly designed using a large w pa-
rameter, the resulting animation does not capture such small
features, resulting in a high-viscosity animation. The other
reason is poorly transferred residuals. As we have discussed
in Section 5.2, if the residuals are transferred ignoring the
relationship between the residuals and the flow field, the re-

(© 2008 The Author(s)
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sulting animation tends to be random noises, which often
look smoother or noisier than the video example.

The white smoke of “Smoke-1I" looks little noisy. Strong
features appear in areas where more flatness is desired. This
implies that the global adjustment of contrast and brightness
in Eq. 8 is not enough. We plan to introduce spatially vary-
ing adjustment of contrast and brightness, which adaptively
changes strengths of fluid features in the image space.

Our method is useful for synthesizing continuous flow an-
imations, but it is difficult to animate a dynamic scene like an
ocean surf, whose optical flow is changing drastically. This
is beyond our current scope of roughly stationary temporal
dynamics. We plan to explore the extensibility of the current
technique to such drastically changing fluid motions.

7. Conclusion and Future Work

We have proposed a method to synthesize a continuous flow
animation by combining a still fluid image specifying the de-
sired appearance and a video example specifying the desired
fluid motion. We abandon physics-based reality but employ
the user’s sense and imagination based on the observation
that a human can easily imagine a rough motion in a fluid
picture and identify similarities between a fluid picture and
avideo example. We developed painting interfaces to convey
their ideas to the computer in such an intuitive way as illus-
trated in this paper. We have demonstrated that our method is
useful to quickly and easily design a continuous flow anima-
tion of various types of fluid pictures. However, animating
a fluid picture is still a challenging problem. We certainly
recognize that our solution is still far from the goal, since
it requires a certain amount of user interactions and notice-
able artifacts are found in a few of our resulting animations.
We nevertheless believe that our approach takes a small step
toward the goal.

One of our future work is to propose a more justifiable
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method, since we have not provided any theoretical under-
pinnings to justify the quality of the resultant animations. We
believe the overall framework of the video analysis/synthesis
shown in Fig. 2 holds some technical soundness, but we ad-
mit each component in the video synthesis process is still
ad hoc. This is because our problem is ill-posed and each
component relies on the user interactions. To relax the ill-
posedness, we plan to investigate a hybrid approach based
on physical model and video example in the future.

Automation of our method is one of the future directions.
This includes flow field estimation from a still fluid image
and improved automatic transfers. We also plan to build a
large fluid video database and provide an automatic search
of video examples suitable for the given target image. We
also plan to explore the extensibility of the current technique
to other types of roughly stationary temporal dynamics like
animations of tree swaying.
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