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Abstract

We present a method for synthesizing fluid animation from a single image, using a fluid video database. The user
inputs a target painting or photograph of a fluid scene along with its alpha matte that extracts the fluid region of
interest in the scene. Our approach allows the user to generate a fluid animation from the input image and to enter
a few additional commands about fluid orientation or speed. Employing the database of fluid examples, the core
algorithm in our method then automatically assigns fluid videos for each part of the target image. Our method
can therefore deal with various paintings and photographs of a river, waterfall, fire, and smoke. The resulting
animations demonstrate that our method is more powerful and efficient than our prior work.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Motion

1. Introduction

Pictures were first animated in lift-the-flap books, and the
animation of pictures is now recognized as a classic vi-
sual effect in the animation industry. It is also an ac-
tive area of research within the field of computer graph-
ics [HAA97, IMH05, HDK07]. In the animation of pictures,
the designer specifies a single target image along with sev-
eral characteristics regarding motion and uses a computer to
synthesize animated sequences derived from the input. Of
course, the level of difficulty involved in animating a picture
varies markedly according to the complexity of the scene and
the objects to be animated. It is difficult to animate a picture
of a fluid. Early research [CGZ∗05,OAIS09] was successful
in designing fluid animation. Here, we focus on this chal-
lenging issue using an efficient data-driven approach to han-
dle a wide variety of fluid motions that could not be animated
previously.

A picture of a fluid can be animated in three ways. First,
a physics-based fluid simulation can be applied to the fluid
part of a target image. However, it is difficult to set the many
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physical parameters required to reproduce the target appear-
ance. The second method can synthesize relatively calm
fluid motions, such as water surfaces [CGZ∗05]. However,
our study focuses on synthesizing more dynamic motions,
such as water splashes, smoke, or fire, in addition to calm
fluids. A third method, which we described in our previous
paper, requires users to specify a video and then transfers
its fluid features to the target image [OAIS09]. This tech-
nique relies on a single video example that limits variation in
the available fluid features. Another problem is that the user-
specified motion field is temporally stationary, which limits
the dynamics. The user must also expend considerable effort
to find an appropriate video example and specify the motion
field.

To address these problems, we develop a data-driven
method to create a fluid animation from a picture (Fig. 1).
The user inputs a target image and an alpha matte that ex-
tracts the fluid region of interest, while providing a few op-
tional suggestions about fluid motion (i.e., flow direction and
speed). We employ a video database that includes hundreds
of video examples of fluids, which therefore helps the user
to synthesize better quality animations with less effort than
with previous methods. The quality of the synthesized ani-
mation is improved due to the large variety of available video
examples. We test the flexibility of our method by synthesiz-
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Figure 1: We employ a database of video examples of fluids (a). The user specifies a target image (b) with a few optional
suggestions about fluid motion, e.g., sketches of flow direction, shown as orange arrows. The user also provides an alpha matte
of the region of interest (c). The system synthesizes an animation (d).

ing a wide variety of fluid animations, i.e., river, waterfall,
smoke, and fire.

The present study makes in three major technical con-
tributions to solve the problem addressed in this paper.
First, we develop an image-search-based technique to effi-
ciently extract local fluid features from a video database. We
then cut each video into smaller pieces, which are vector-
quantized to construct a bag-of-features codebook for effi-
ciently finding a video piece with an appearance that is sim-
ilar to part of the picture. Second, we develop an algorithm
to assign the video pieces to the picture so that the integrated
appearance and motion become smooth. This task is for-
mulated as a multi-label assignment problem based on the
Markov random field (MRF). The third contribution is the
extension of the original synthesis algorithm. In our previ-
ous study, we decomposed a video into three components,
i.e., the average image, the motion field, and the residu-
als [OAIS09]. However, we found that two components (the
average image and the differences between the average im-
age and the original frames) produce a wider variety of dy-
namics than previously possible by using the video database
effectively. Additionally, our approach markedly reduces the
user burden, as illustrated below.

2. Previous Work

Image and Video Database Image and video searching is
an active research field. Recently, this kind of search has
also been applied to image and video syntheses for com-
puter graphics applications. Millions of images are useful
for scene completion [HE07]. Sketch2Photo allows a user to
draw rough sketches and search for adequate images from a
database to synthesize a desired scene [CCT∗09]. Skyfinder
searches for a user-desired sky image, modifies its appear-
ance, and creates a composite [TYS09]. With regard to video
synthesis, SIFT Flow can be used to estimate the motion
field in a single image and also to transfer part of a video
example onto a single image [LYT∗08]. Webcam Clip Art
provides a video database of outdoor scenes and is useful
for scene relighting [LEN09]. However, no existing method
addresses the problem of animating a picture of fluid using
a video database.

Animating Pictures Many methods have been proposed for
creating an animation from a single image [HAA97,IMH05,
HDK07]. These methods are useful for touring into a pic-
ture and creating character animations, but fluid animation
is beyond their scope. Chuang et al. proposed a method to
synthesize an animation with stochastic motion from a sin-
gle image [CGZ∗05], but this technique only supports oscil-
lation of the water surface, such as ripples, and not flowing
fluid animation. Lin et al. synthesized animation from mul-
tiple, instead of single, high-resolution stills [LWW∗07].

Video Texture Synthesis Video texture synthesis has
also been well-explored [WL00, BJEYLW01, SSSE00,
DCWS03]. However, it is difficult for users to modify the
appearance or motion of a synthesized animation. Wang and
Zhu analyzed fluid animation, represented it with textons,
and synthesized an animation [WZ03]. Bhat et al. proposed
a sketching interface that enables users to edit a fluid anima-
tion of a video example [BSHK04]. Users can also change
the appearance of the animation, but the problem of animat-
ing a picture of fluid has not yet been solved. Kwatra et al.
developed a method that can design the animation of a tex-
ture flowing over a user-specified motion field [KEBK05],
where only a stationary motion field is demonstrated with-
out any high-frequency fluid features. Ma et al. extended
example-based texture synthesis to allow an exemplar to af-
fect the details of motion fields [MWGZ09]. These methods
enable users to modify an existing fluid animation and syn-
thesize an animation, but they do not allow users to specify a
single image as an appearance constraint. Okabe et al. devel-
oped a technique for animating a picture of fluid [OAIS09];
this technique requires users to design a motion field manu-
ally and to search for an appropriate video example. We ex-
tended this work, incorporating a video database to reduce
user effort and to improve the quality of the synthesized an-
imations.

3. System Overview

Given a target image of fluid that a user wants to create a
fluid animation, our process involves selecting appropriate
video examples from a database, assigning them onto parts
of the target image, and integrating them all seamlessly into
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Figure 2: System overview.

a final animation. We assume that the user inputs a single
target image and an alpha matte that extracts the fluid region
of interest. The user can also provide a desired motion field
by sketching the flow direction and painting a speed map,
which is used as a constraint in the assignment process.

Our system consists of three components: 1) construction
of a video database of fluids (Fig. 2-a), where each video
example is cut into small pieces, 2) a best-match search for
an appropriate video example piece and assignment of this
to a part of the target image, and 3) synthesis of the final
animation through seamless integration of all the assigned
pieces and adjustment of the overall appearance. The of-
fline process of database construction begins with gathering
original video examples of fluids (Fig. 2-b). To increase the
number of video examples, we cut each video example into
smaller pieces (Fig. 2-c). For each video example, we com-
pute the average image by averaging the frames (Fig. 2-e) to
obtain representative appearance information. We also com-
pute differences between the average image and the frames
(Fig. 2-f) that have no significant color properties but cap-
ture high-frequency fluid features. From all of the averaged
images in the database, we construct a bag-of-features code-
book and describe each average image using a histogram of
visual words (Fig. 2-d).

Given a target image (Fig. 2-g), we cut it into pieces using
the same process used in the database construction (Fig. 2-
i). Next, we compute the histogram of visual words for each
piece (Fig. 2-h), perform a best-match search between his-
tograms of visual words (see Figs. 2-d and h), and assign
video example pieces that have appearances similar to target
image pieces. When a user-specified motion field is given, it
is used as a constraint for solving the assignment problem.
Based on the assignment results, differences are copied onto
the corresponding target image pieces (Fig. 2-j). Finally, all
assigned differences are integrated seamlessly and the fi-

nal appearance is synthesized by adjusting the appearance
(Fig. 2-k).

Our data-driven transfer of fluid features to a target image
was inspired by Image Analogies [HJO∗01]; the transferred
differences relate to the target image piece in the same way
as the differences originally related to the average image of
the video example. Our method differs from Image Analo-
gies in that it is not pixel-based but rather is a patch-based
texture synthesis, similar to Image Quilting [EF01]. When
integrating patches, Image Quilting computes a minimum
error boundary cut to remove seams between patches; we
compute alpha blending using a computationally inexpen-
sive image pyramid. A video example piece is decomposed
into its average image and differences; the former captures
the overall low-frequency appearance and the latter has high-
frequency fluid features. The high-frequency features can be
integrated seamlessly through simple alpha blending.

4. Database of Video Examples

We need to prepare as many video examples as possible, be-
cause a large amount of data is always important to achieve
high-quality data-driven image synthesis [HE07, TYS09].
However, despite the large volume of video data available
on the Internet, we found it difficult to gather the tens of
thousands of video examples suitable for our purpose. Our
criteria for video examples are:

• The camera be fixed and focused on the fluid itself, i.e.,
the fluid must be the primary character of the video.

• The video examples of fluids need to be of sufficiently
high quality for animation synthesis.

• To simplify our method, we use only video examples with
no other significant moving object other than fluids.

We gathered several hundred video examples of water scenes
from commercially available video footage collections, but
discarded any that did not satisfy our requirements. Finally,
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we have a total of 151 video examples of water scenes
(Fig. 3). All video examples in the database have a resolution
between 640×480 pixels and 400×300 pixels.

Figure 3: Thumbnails of video examples in the database.
All video examples satisfy three requirements: 1) the fluid is
the main character in each scene, 2) each video example has
a resolution quality between 640×480 pixels and 400×300
pixels, and 3) no other moving objects appear in the scene.

To increase the amount of data, our strategy is to observe
each video example locally. For example, a video example of
a waterfall may have a different global shape from the shape
of the waterfall in the target image. However, its local parts,
such as droplets or splashes, may be used to animate a part
of the target image.

To increase the number of video examples in the database,
we flip each video example horizontally (thereby doubling
the number of examples); we also scale and rotate each ex-
ample (Fig. 4-a). We then cut examples into smaller video
pieces (Figs. 2-c and Fig. 4-b). We make three versions of
each video example by scaling them to 50, 75, and 100% of
their original size. We also make three versions of each video
example by rotating the original by −22.5, 0.0, and +22.5
degrees. Each version is then cut into smaller pieces with a
resolution of 48×48 pixels, allowing neighboring pieces to
overlap each other (Fig. 4-b). Such an idea of patch library
is also used for synthesizing facial image [MPK09].

Figure 4: Database construction.

Video example pieces that include not only fluids but also
other objects such as rocks, trees, or the sky degrade the effi-
ciency of the database. Therefore, we remove such stationary
examples by calculating the significance of motion. For each
piece, we compute optical flow between neighboring frames
(Fig. 5-b) to obtain an average through all of the frames

(Fig. 5-c). In a video example, only a pixel position with a
significant averaged motion is used; other pixels are masked
out (Fig. 5-d). In addition, any video example in which no
pixel position has significant motion is completely removed
from the database. We use OFLib to compute a dense optical
flow [ZPB07]. This algorithm has three important open pa-
rameters: θ, λ, and the number of iterations, which we set to
1.0, 0.8, and 25, respectively. Because a fluid video has high-
frequency dynamics, we set parameters that reduce sensitiv-
ity to such dynamics but still yield relatively smooth results.
We have collected 246,477 video examples of water scenes.

Figure 5: Processing a video example piece.

To ensure efficient best-match searching and efficient as-
signment of video examples, we construct a bag-of-features
codebook, by which each video example piece is described
using a histogram of visual words (Fig. 2-d). The bag-
of-features technique works well for searches involving
small image patches such as those in our database, espe-
cially when it is combined with spatial pyramid represen-
tation [SSSFF09]: while bag-of-features has only informa-
tion of presence of textures, the spatial pyramid representa-
tion adds information of location of textures that is important
even for our small patches. We make a representative image
by averaging the frames of each video example piece when
constructing the codebook (Fig. 2-e). Averaging involves the
motion blur that often appears in a picture of fluid; this mo-
tion is often intentionally portrayed by a painter or a photog-
rapher to visualize the trajectories of fluid motion. We ex-
tract SIFT features of each representative image by applying
a SIFT descriptor, and compute 128 dimensional feature vec-
tors at each point on a regular grid of 9×9 over the 48×48
pixel resolution image. The use of SIFT descriptors on a reg-
ular grid is often better for image searching than using key
points detected by Gaussian differences [LP05].

We then compute vector quantization on all extracted
SIFT features to obtain the visual words used to construct the
codebook. For the vector quantization, we apply a repeated
cluster bisectioning approach, because this method is report-
edly faster and yields a better quality of clustering than K-
means [ZKF05]. Similarly to K-means, we set the number of
clusters, k, based on experimental results for settings of 100,
200, 300, and 500; we have chosen 200 as the best parameter.
Given the codebook, we generate a bag of features for each
representative image of a video example piece. We assign
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each SIFT feature to its nearest visual word and construct a
histogram with spatial pyramid representation [LSP06].

5. Assignment of Video Example Pieces

Given a target image, we first decompose it into pieces
(Fig. 2-i) in the same manner as in the database construc-
tion (Fig. 4-b). Next, we assign an appropriate video exam-
ple piece to each target image piece. Our solution of the
assignment problem involves three criteria: 1) appearance
similarity between a video example piece and a target im-
age piece; 2) smoothness of motion fields between neighbor-
ing assigned pieces; and 3) appearance similarity between
neighboring assigned pieces. The first criterion means that
the more similar a video example piece is to a target image
piece, the more likely it is that both pieces have similar fluid
motions. The second criterion means that if a part of the tar-
get image is assigned a fluid motion, its neighboring piece
is likely to have a similar fluid motion, i.e., their velocities
and temporal video textural patterns would be similar. The
third criterion prevents neighboring pieces from generating
an inconsistent appearance in the video texture.

To address the first criterion, we compute appearance sim-
ilarity by comparing bag-of-features histograms (Figs. 2-d
and h). As in the database construction, we extract SIFT
features on the regular grid in each target image piece and
describe the image feature as a histogram of visual words.
Appearance similarity is computed using a histogram inter-
section,

I(He,Ht) =
k

∑
i=1

min(He[i],Ht [i]), (1)

where He and Ht are the histograms of visual words of a
video example piece and a target image piece, respectively.

For the second criterion, we assume that the similarity
measure of the average motion field is a simple definition
of smoothness between neighboring motion fields (Fig. 5-c).
However, this definition is insufficient, as shown in Fig. 6,
when each video example piece has a similar average mo-
tion field; that is, when they all flow from top to bottom at a
similar speed. However, if we select motion fields and assign
them to neighboring target image pieces, the result looks un-
natural because their temporal video textural patterns differ.
Fig. 6-a shows a small waterfall captured from a short dis-
tance in which the motion is temporally unstable due to vis-
ible droplets and splashes. Fig. 6-b , however, shows a large
waterfall captured from a long distance, with a temporally
smooth motion. These differences in temporal patterns are
well described by Fourier analysis; Fig. 6-a has uniformly
strong coefficients at all frequencies whereas Fig. 6-b has
strong coefficients only in the DC component and weak co-
efficients at other frequencies. We can compute the Fourier
transform at each pixel position x as M̂(x) = F(M(x)). F is
the one-dimensional discrete Fourier transform and conver-
sion to the power spectrum; M(x) is a sequence of motion

field at x, i.e., [M1(x),M2(x), ..., ,MN(x)] and N is the num-
ber of frames. We can thus define the smoothness of neigh-
boring motion fields, Mi and M j, as

smooth(Mi,M j) = d(M̂i
1,M̂

j
1)+σ

N/2

∑
f=2

d(M̂i
f ,M̂

j
f ), (2)

d(F,G) = ∑
x∈Ω

(F(x)−G(x))2, (3)

where Ω is a set of pixel positions in the overlapping area
between neighboring target image pieces, F and G, and σ is a
parameter balancing the DC component, which corresponds
to the average motion field, and the AC component, which
describes the higher-frequency dynamics.

Figure 6: Fourier analysis on motion fields.

For the third criterion, we can describe the textureness of
an assigned video example piece and measure its similarity
to neighboring pieces. Fig. 7 illustrates why this criterion
is required. The two video examples of smoke have differ-
ent appearances: one has strong contrast and the other has a
smooth appearance. However, because they have similar mo-
tions, flowing from left to right, the first and second criteria
allow them to be neighboring pieces and will result in a vi-
sual artifact with inconsistent neighboring textures: one has a
high contrast appearance and its neighbor has a low contrast
appearance. This is because the first criterion is based on a
bag of features of a SIFT descriptor, which is invariant to
illumination and contrast change and therefore too weak to
preserve consistency. To solve this problem, we can describe
the textureness of each frame of a video example piece us-
ing a four-level scale-space Laplacian pyramid, and sum the
texture through all frames; this process distinguishes Fig. 7-
a and b, because the former has stronger coefficients than the
latter through all of the sub-bands. The textureness of each
video example piece, T , has a dimension of 48× 48× 4.
The similarity of neighboring textureness, texture(T i,T j) is
computed as the Euclidean distance in the overlapped area,
similar to Eq. 3.

We solve the assignment problem by first selecting mul-
tiple video candidates for each target image piece based on
their similar appearance (Eq. 1). We set the number of can-
didates to 100, i.e., each target image piece has 100 labels,
then determine which label should be assigned to each tar-
get image piece. We next formulate the assignment problem
with all of the criteria using MRF, which can be expressed
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Figure 7: Analyzing textureness using Laplacian pyramid.

as:

argmin
i

E = ∑
p

Vp(li)+λ ∑
(p,q)

Wp,q(li, l j), (4)

where labels, li and l j, are assigned to the neighboring tar-
get image pieces, p and q. Vp is the data term and Wp,q is
the smoothness term; these are defined using a balancing pa-
rameter ρ, as follows:

Vp(li) = I(Hp,Hli), (5)

Wp,q(li, l j) = smooth(Mli ,Ml j )+ρ · texture(T li ,T l j ). (6)

To ensure energy minimization, we apply the graph-cut
method with a-expansion [BVZ01], which is provided as a
package by [SZS∗08]. After the graph cut is run, each target
image piece has an assigned video example piece that best
satisfies all criteria.

User-Specified Motion Field A user can manually spec-
ify a desired motion field and influence the assignment pro-
cess, which is useful for controlling dynamics or modify-
ing a failed assignment. To make the editing process as easy
as possible, we can decompose motion field into orientation
and speed maps [OAIS09]. The user draws using strokes
(Fig. 8-a) and generates an orientation map by interpolat-
ing the sparsely drawn strokes using a radial basis function
(Fig. 8-b). The speed map is a gray-scale image that is easily
edited using paint software (Fig. 8-c). The user can specify
the orientation and the speed map, or only one of these. It
is possible to edit a speed map from scratch, but it is eas-
ier to edit a speed map obtained from the already assigned
video example pieces. The edited motion field affects the se-
lection of the 100 candidates: before the selection, we can
narrow down candidates in advance by discarding video ex-
ample pieces with motions that differ greatly from the user-
specified motion field.

6. Video Synthesis

Integration of Assigned Video Example Pieces After as-
signment, we expect neighboring target video example im-
age pieces will have video textures. However, because they
are likely to come from different parts of different video ex-
amples, naïve integration of these pieces causes visible ar-
tifacts, especially discontinuities along the boundaries be-

Figure 8: User-specified motion field. Here, the user wants
fire to move from bottom to top along the green arrows (a
and b) with a slower speed at the bottom and a higher speed
at the top (c).

tween neighboring pieces. Our strategy for seamless inte-
gration is to decompose a video example piece into its av-
erage image and differences. We average all the frames of
each video example piece as A = 1

N ∑
N
i=1 Fi, where Fi are

the frames of the video example piece and N is the number
of frames. We compute differences as Di = Fi − A. These
differences capture high-frequency fluid features, which can
be integrated using alpha blending without introducing ar-
tifacts, and not the low-frequency appearance (Fig. 9). To
merge smoothly overlapped areas between neighboring tar-
get image pieces, we apply an image pyramid [BA83] and
perform alpha blending for each sub-band. This generates
better results than standard alpha blending along boundaries
because it can introduce more continuity at low frequencies
and also preserves high-frequency fluid features.

Figure 9: Integration of neighboring video example pieces.
The left side illustrates how each target image piece has an
assigned video example piece, and the right side illustrates
how corresponding differences are copied and integrated us-
ing alpha blending with an image pyramid.

Recovery of Color Appearance The integrated differences
have video textures but no color appearance. To recover
the color of the target image, we can synthesize an image
that corresponds to the average image (Fig. 2-e) and add it
onto the integrated differences. We can synthesize this ap-
proximated average image by applying image-based motion
blur [BE01] and Gaussian blur to the target image. For mo-
tion blur, we compute a motion field over the target image,
based on the motion fields of assigned video pieces. An open
parameter to simulate shutter speed controls the effect of
motion blur. The additional Gaussian blur removes the sharp
edges that are introduced by image-based motion blur; ker-
nel size is determined in proportion to the magnitude of the
motion field.

Appearance Matching Finally, we can match the appear-
ance of the synthesized animation more precisely to the

c© 2011 The Author(s)
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target image. We apply histogram-matching between each
frame of the synthesized animation and the target image in
the same manner as [OAIS09] using Heeger and Bergen’s
texture synthesis algorithm [HB95]. To recover local appear-
ance, we divide the image space into regular grids and apply
the process to each region independently.

Dynamic Boundaries of Fluid The synthesis method de-
scribed above is useful for rendering fluid features with
a static overall shape, e.g., a waterfall seen from a long
distance. However, when we apply this method to fire or
smoke, the synthesized animation looks unnatural. We de-
velop a simple ad-hoc method to achieve dynamic bound-
aries of fluid by advecting the alpha matte according to mo-
tion fields [BNTS07]. We can define an image-warping func-
tion Wi(I) that deforms an image I according to the motion
field Mi of the synthesized animation. Given an alpha matte
α, we repeatedly synthesize the time-varying alpha matte Bi:
Bi+1 = τWi(Bi)+(1−τ)α, where B1 is equal to α and τ con-
trols the dynamics of Bi. We also apply an area-preserving
adjustment each time Bi is computed to ensure that the area
of Bi is always the same. Synthesis of dynamic boundaries
requires that the user perform an additional task: manual de-
sign of the background image. The background is hidden
by fluid in the original image, but it appears when the fluid
moves. In our experiment, we used Adobe Photoshop’s clone
stamp tool and found that it took less than 10 min to design
each background.

Figure 10: Each frame of a fire animation has dynamic
boundaries and a corresponding alpha matte.

7. Results and Discussion

We employed an independent database for water, fire, and
smoke scenes. This involved gathering 151, 96, and 89
video examples for the water, fire, and smoke databases, re-
spectively. From these, we obtained 246,477, 226,986 and
195,318 video example pieces. We synthesized fluid anima-
tions for target images, including photographs and paint-
ings (Figs. 1 and 11). Figure 1 shows the application
of our technique to a tour into the picture in the supple-
mentary video [HAA97]. We designed an alpha matte for
each target image using a scribble-based image segmenta-
tion tool [LSTS04]; this process takes less than 5 min. We
specified the orientation map for all target images; design-
ing the orientation map requires a sparse set of user-drawn
strokes, which is a simple task and takes less than 1 min.
We specified the speed map only for the examples shown in

Figures. 1, 11-d, and 11-g. Designing a speed map from
scratch is difficult, but when synthesizing the first version of
an animation, our system outputs the resulting speed map.
This is a gray-scale image that can be easily loaded into any
paint software. By editing the map, the user can make the
animation run faster or slower.

Figure 11: Thumbnails of synthesized animations: pho-
tographs(a,b,c,e,h) and paintings (d,f,g).

Assignment of Video Example Pieces The supplementary
video demonstrates that our assignment algorithm works
well, using Figures 11-e and 11-f as target images. Render-
ings from the assigned video example pieces shown in the
supplementary video already resemble the target image. In
Figure 11-e, the top region has strong flames, with smaller
flames appearing around the tree trunks. For each region,
the assignment process copies and pastes appropriate ani-
mations from various video examples. Figure 11-f has re-
gions with waterfalls, whitewater, and calm water surfaces;
each of these areas is based on appropriate video examples.
Waterfalls or regions with flames tend to have successful
assignment even without any user input because they have
strong image edges that correlate to the flow direction. For
example, waterfalls and flames always move from top to bot-
tom and from bottom to top, respectively. High-frequency
regions tend to have slower, more detailed motion. However,
the flow direction of the water surface in Figures 11-a and
11-h is ambiguous. It is also difficult to determine the flow
direction of smoke, because image edges do not correlate
to an underlying flow direction and speed. The correlation
between appearance and motion is most noticeably absent in
paintings. In these cases, orientation and speed maps become
especially important.

Timing In our current implementation, which is not opti-
mized, we spend an average of approximately 1 hour cre-
ating the first version of the synthesized animation. We use
a workstation with an Intel(R) Xeon(R) 3.33 GHz cpu for
video synthesis and a remote file server for the database.
We spend 30 min on the assignment process and 30 min on
video synthesis. The assignment process is slowed not by
the energy minimization process but by computation of the
smoothness term (Eq. 6). Each node of the MRF has 100
candidates, i.e., there are 100× 100 edges between neigh-
boring nodes. Computation of each edge requires loading
two sets of motion data from the database, and disk access
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becomes a bottleneck. A more efficient disk-access process
will be developed in future work. We plan to assemble cur-
rently fragmented files into a single large file to eliminate the
random-seek latency [KSH04].

Open parameters Assignment of video example pieces in-
volves three open parameters: σ to balance the DC and
higher frequency components in Eq. 2; λ to balance the data
and smoothness terms in Eq. 4; and ρ to balance the smooth-
ness of motion fields and similarity of neighboring texture-
ness in Eq. 6. In our experiment, λ does not significantly
affect results, probably because we rely on 100 video ex-
ample candidates that have already satisfied the data terms
to some extent. σ has a significant effect on the results; an
overly large value of σ ignores the DC component, which
is equivalent to the average motion field, and thus, the re-
sulting animation tends to have chaotic flow directions. ρ is
also important, but it has a weaker effect than the smooth-
ness of motion fields. During the experimental process, we
set λ = 0.01, σ = 100 or 1000, and ρ = σ× 100. To reduce
the computational time, multiple computers are useful to find
the best parameter set. We routinely prepare a variety of pa-
rameter sets and run them in parallel.

Duration of Synthesized Animation The duration of the
synthesized animation depends on the length of the video
examples. However, several methods are available to synthe-
size an infinitely flowing fluid animation from a video exam-
ple [SSSE00,DCWS03,BSHK04]. By applying one of these
techniques to our database and defining the rule of infinite
repetition for each video example, our synthesized anima-
tion can also permit infinite repetition.

7.1. Comparison with Previous Methods

It is possible to synthesize fluid animation using a texture-
optimization method [KEBK05]. However, this method is
not suitable to synthesize time-varying high-frequency fluid
features, since it is designed to preserve the original appear-
ance of a given texture image for all frames.

The difference between our method and our prior work
in [OAIS09] lies in how a fluid video is decomposed: we cur-
rently decompose a video into the average image and the dif-
ferences between the average image and the original frames.
On one hand, our prior work decomposed the differences
further into the stationary motion field and the residuals. We
reported that such a decomposition might cause a failure of
transferring the residuals, in applying them to the fluid in the
input image. More specifically, if the original video exam-
ple was not appropriately chosen by the user, our prior ap-
proach would provide animations with visible artifacts, such
as more noises and greater viscosity than the original video
example (see Section 5.2 and 6 in [OAIS09]). Alternatively
our new method simplifies the decomposition process, while
having a wider variety of the fluid animations. These advan-

tages are obtained by the new algorithms with the fluid video
database, not with a single video specified by the user.

The supplementary video shows a side-by-side compar-
ison of Figure 11-a using the previous and the present
method. Previously, we could not reproduce fluid features
of the video example, e.g., dynamic water splashes: the re-
sults appeared as if irrelevant synthesized noise flowed along
a static motion field. Note that the motion of the resulting
animation is faster than the motion of the video example;
the residuals over a slow motion field were transferred to a
fast motion field, which failed to reproduce the fluid features
of the video example. To synthesize better fluid features, the
user could search for a better video example, but it was time-
consuming to search for a video with motion that was actu-
ally similar to that designed by the user. On the other hand,
the present method successfully reproduced fluid features of
the assigned video example pieces.

The present method further reduces the user’s burden,
as seen in the case of Figure 1. Here, using the previous
method, the image had to be divided into waterfall and river
parts and various videos had to be assigned independently;
in contrast, the present method processes the whole image at
once.

Figure 12: The result of the user study. Each blue bar rep-
resents the average score of visual quality. Each error bar
represents the standard deviation.

7.2. User Study and Quality Discussion

We performed a user study to evaluate the visual quality
of the resulting animations. Two professional animators and
fourteen computer science students participated in the study.
We presented the resulting animations of Figures 1 and 11.
Each subject ranked the visual quality of each animation
with regard to visible artifacts on a scale ranging from 1
(poorest quality) to 5 (best quality). The ranking is relative,
i.e., 1 and 5 must each be assigned to at least one of the re-
sulting animations. The results are shown in Figure 12. The
highest average score with the smallest standard deviation
was assigned to Figure 11-f, i.e., almost all subjects agreed
that the water scene had a natural appearance. The other wa-
ter scenes received no scores of 1 but several scores of 5,
confirming acceptable visual quality. On the other hand, fire
and smoke scenes were given lower scores. We discuss the

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Okabe et al. / Creating Fluid Animation from a Single Image using Video Database

reasons and the limitations of our method, considering Fig-
ure 11-d as a typical case in which our method failed.

Failure of Video Example Assignment Figure 11-d had
the lowest average score. The subjects commented that it
looked noisy: the smoke differed in appearance between
areas and the smoke movements were chaotic. This was
due to failure of the assignment process for two major rea-
sons. First, the selection of 100 candidates of video exam-
ple pieces was not successful, as the target image was non-
photorealistic and had many flat areas. Second, the assigned
video example pieces had relatively chaotic movements. We
specified the orientation and speed maps, which constrained
the average motion of each patch and created the globally
upward motions of the smoke. However, these specifications
did not constrain the local motions, which were almost ran-
dom. Thus, we require more sophisticated control of fluid
motion than a single manually specified motion field.

Visible Artifacts Another limitation of the present method
is that the resulting animation inherits artifacts of the video
examples in the database. In our experiment, each video ex-
ample was originally compressed by the QuickTime movie
codec. Our system extracts each frame and saves it in JPEG
format for efficient image processing. Therefore, block noise
and interlacing artifacts are included in the database. These
artifacts are not only inherited but are also sometimes exag-
gerated when appearance transfer process increases the im-
age contrast. For example, the subjects commented that the
bottom part of Figure 11-d had a noisy appearance. Some
exaggerated JPEG block noise can actually be seen in this
image (Fig. 13). We are currently considering simple solu-
tions to prepare large storage and apply lossless compression
to each video example.

Figure 13: (a) The assigned video example pieces had rel-
atively low contrast. (b) Appearance transfer enhanced the
contrast to recover the appearance of the target image, but
it also exaggerated block noises that were hidden in (a).

Preservation of Original Appearance Some subjects com-
mented that the resulting animation looked different from
the fluid in the targedt image. It is often difficult to preserve
the appearance of the target image, especially when it has
strong edges at significantly high frequencies. For example,
Figure 11-c shows the characteristic appearance of smoke
trajectories. However, its resulting animation does not retain
this appearance, i.e., the trajectories disappeared. The same
discussion is possible for the fire animation of Figure 11-e

in that the original shape of the flame was not reproduced
exactly. Our method is limited in that it preserves the overall
shapes of fire and smoke, but our database is not sufficiently
large to preserve details, such as the smoke trajectories.

Lighting Effect The lighting effect or the movement of an
object other than fluid is outside our scope of this study. It
is often noted that animations in which only fluid parts are
mobile and other parts remain completely stationary do not
have a natural appearance. Especially, the movement of the
flame in Figure 11-e must influence the lighting effect on the
ground. However, our goal is not to animate the whole scene
of a target image but to animate fluid parts.

8. Conclusions and Future Work

We have developed a data-driven method for synthesizing
a fluid animation from a single image. User input includes
a target image and an alpha matte that extracts the fluid
region of interest. A few additional suggestions regarding
fluid speed or orientation enable the user to control and re-
fine the resulting animation. The technique described here
allows the user to produce a higher quality fluid animation
with less effort than with other methods reported previously.
The present approach suggests a number of areas for future
work. In particular, we are currently pursuing three avenues
as described below:

More Efficient Use of Video Database One of the lim-
itations of our method is the difficulty of preserving de-
tailed appearance of a target image. This is because our
database does not include a video example that fits a tar-
get appearance. In addition to increasing the size of the
database, we plan to investigate more flexible use of the
video database. For example, the patch size is currently fixed
to 48× 48. However, if we assigned a video example piece
taking its image warping into account as described previ-
ously [BSHK04], more detailed target appearance would be
reproduced.

A More Intelligent System Our current methodology in-
volves cutting a video example into pieces and assigning
them locally. However, most failed assignments were caused
by the loss of global information. If the system could under-
stand scene structures or fluid states, our approach would
become more automated. That is, the system would be able
to estimate fluid velocity by understanding the scene struc-
ture, which would allow it to distinguish, for example, chim-
ney smoke from the smoke caused by an explosion, even
though they look similar. Previous studies have attempted
to develop more intelligent systems by incorporating SIFT
flow [LYT∗08]. This type of system can estimate the motion
of a campfire in a single image by fitting of a video sam-
ple. We plan to develop a similar technique and incorporate
it into our system.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



M. Okabe et al. / Creating Fluid Animation from a Single Image using Video Database

More Dynamic Fluid Animation The present method
works well in treating the high-frequency part of the fluid,
such as water splashes. However, large fluid features, such
as the overall shape of a breaking wave, cannot be synthe-
sized. Such global features of the fluid should be created
in the future. We plan to investigate image object-retrieval
techniques as described previously [KCCH09] to efficiently
extract large semantic regions and assign it to parts of the
target image.
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