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Figure 1: Top row: the input video sequence of an explosion. Bottom row: the composite of the extracted explosion with another background
image. Our method automatically extracted the explosion, which has considerable transparency, especially in the smoky regions of the 4th
and 5th frames.

Abstract

We propose a method to extract fluids from a video that is captured
outside a special studio. Since such a video usually has a complex
background and the fluids overlap with much transparency, it is a
difficult, time-consuming task for a designer to extract them. Our
goal is to develop an efficient method to solve the problem: we esti-
mate the background of an input video, and then compute the fore-
ground and alpha matte at each frame. Our method estimates the
background by observing only pixels that have little motion at each
frame. Given the estimated background, we estimate an initial al-
pha matte based on the color difference at every pixel between each
frame and the estimated background. Since the initial alpha matte
usually includes many artifacts, we employ the gradient-domain
image processing approach to refine it: our method attenuates un-
required gradients adequately, and then integrate them to recover
the refined alpha matte. The foreground, which explains about the
color and texture pattern of the fluid itself, is also estimated in a
similar manner. We demonstrate that our method enables to extract
the fluids from a video, which were difficult to achieve using the
previous methods.
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1 Introduction

In computer graphics production, a video database of fluids is an
important resource for a designer to create scenes with fluids re-
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lated with smoke, fire, or an explosion. Although physics simula-
tions of fluids have become powerful tools for such purposes, it is
often difficult for a non-expert designer to understand and set all the
physical parameters appropriately. Hence, constructing a compos-
ite with fluid videos is still a popular and reasonable way to create
a high-quality fluid scene.

Most of the fluid videos in the current database are produced in a
special studio, e.g., the explosion of a bomb, captured in front of a
single-colored screen [Smith and Blinn 1996]. Such studios enable
us to capture fluids with clean alpha mattes, which is important for
the efficient creation of a composite. Nevertheless, we are also in-
terested in fluid videos captured outside the studio, since they usu-
ally include larger-scale, more dynamic fluids, captured in a real en-
vironment. Also, such video materials have recently become more
readily available on the web (the top row of Fig. 1 shows an ex-
ample). However, since such fluid videos are usually captured in
front of a complex background, rather than a single-colored screen,
it is time-consuming to manually separate the fluid from the back-
ground. Our goal is to develop a system to support this process,
allowing the designer to efficiently use the extracted fluids for post-
production, as shown in the bottom row of Fig. 1.

Extraction of transparent fluids from a video is still a challenging
problem. As far as we know, none of the previous methods (in-
cluding those of the survey [Wang and Cohen 2007]) can solve
the problem perfectly. One approach solves the problem efficiently
by introducing a strong assumption to the fluid. For example, the
Bayesian Matting method assumes that the fluid has only a single
color [Chuang et al. 2002], which works well for faint smoke. How-
ever, when it is applied to a colorful explosion, the extraction result
has only a flat color (Fig. 2-d). Ghanem et al. assume a texture
rather than a single color [Ghanem and Ahuja 2008]. However,
since the texture cannot change temporally, it is also inadequate
for representing an explosion. There is a method for dehazing a
video [Zhang et al. 2011], but it is likewise limited to fog of a sin-
gle color. A related work involves video matting combined with
transparency caused by a motion blur [Lin et al. 2011], but this
technique has not been applied to the transparency of fluids.

Another approach is to apply the image matting method to each
frame of the video [Sun et al. 2004; Levin et al. 2008; Gastal and
Oliveira 2010]. In this approach, we create a trimap or scribbles
for each frame, which partitions the image into three regions: ‘defi-



Figure 2: We compare our method with previous methods. The trimap (c) is computed based on the color difference between the original (a)
and the background (b) at each pixel. We use the trimap to compute the foreground color for Bayesian Matting (d). For Spectral Matting (e)
and Shared Matting (f), we use the trimap as direct input to the algorithm.

Figure 3: An overview of our method.

nitely foreground,’ ‘definitely background,’ and ‘unknown.’ This
type of procedure is effective for estimating the alpha matte on
small transparent regions around an opaque object. However, since
a fluid has transparency over a large area, it is difficult to apply such
a method directly to fluid videos. Fig. 2-e shows the result of Spec-
tral Matting [Levin et al. 2008]. This procedure extracts not only
the fluids, but also the background image over a large area. Its com-
putational cost is an additional disadvantage; it took 214 seconds to
process a single frame. Fig. 2-f shows the result of Shared Mat-
ting [Gastal and Oliveira 2010]. This method processes each video
frame in real time, successfully removes the background, and ex-
tracts the fire regions. However, there are many artifacts, appearing
as blobs in the faint smoke regions.

To address these issues, we develop a novel method for extract-
ing fluids from videos with reasonable computational expense. In
the example of Fig. 1, our method automatically extracted the ex-
plosion together with the faint smoke (Fig. 2-g). Fig. 3 shows an
overview of our approach. Given a fluid video captured with a fixed,
monocular camera, we first estimate its background, and then com-
pute the foreground and alpha matte for each frame. We estimate
the background by averaging throughout the entire sequence only
pixels that have little motion (Fig. 3-b). Most of the smoke disap-
pears, lingering at some pixels where it is particularly dense; i.e., it
always has significant motion.

More specifically, given the estimated background, our key idea is
that the user creates an initial, rough alpha matte by manipulating
several parameters, and then our system refines it. Because it is
difficult for a computer to automatically estimate the alpha matte,
the user provides a rough alpha matte. On the other hand, because it
is difficult for the user to remove the artifacts from the rough alpha
matte, our system refines it.

We compute an initial alpha matte by calculating color differences
(Fig. 3-c). It roughly represents the area of the smoke, but the tex-
ture patterns of blocks of background can be seen in it. To remove
these texture patterns, we employ gradient-domain image process-
ing to refine the alpha matte (Fig. 3-d) and estimate the foreground
(Fig. 3-e), which can be used to create a composite (Fig. 3-f). We
compute horizontal and vertical image gradients for each frame, at-
tenuate the gradients independently of the smoke, and then integrate
them to obtain the refined alpha matte. The technique of attenua-
tion is our major technical contribution. The computational time is

several seconds per frame for 640× 360 resolution.

2 Our method

We model the ith frame of a video sequence as a standard alpha
blending:

Ii(~x) = Fi(~x)αi(~x) +B(~x)(1− αi(~x)), (1)

where ~x denotes a pixel position, and Ii, Fi, B and αi denote the
original frame, its foreground, background, and alpha matte. Note
that, because we assume that the input video is captured with a
monocular camera, B is single through the entire sequence. In all
of the following discussion, the range of a pixel value is from 0 to 1
(not 255). Given an input video, our algorithm begins by estimating
the background.

2.1 Background Estimation

We estimate the background by observing only pixels that have in-
significant motion. More sophisticated approaches to background
estimation also exist (e.g., [Apostoloff and Fitzgibbon 2004]), but
our approach is also useful for videos like the ones used in this pa-
per and our supplementary video.

We compute the optical flow using the OFLib package [Zach et al.
2007], which is implemented via the graphics processing unit
(GPU). It is computationally efficient, requiring about 0.1 second to
compute the optical flow between temporally neighboring frames at
640×480 resolution. Then we compute the color of the background
B(x) as the following weighted average:

B(~x) =

∑
i Ii(~x)Wi(~x)∑
iWi(~x)

, (2)

Wi(~x) = e−β|Vi(~x)|, (3)

where Vi is the optical flow computed between the ith and i + 1th
frames, Vi(~x) is the velocity at the pixel position ~x, Wi is the
weight, and β is set equal to 40 throughout our experiments. Fig. 4
shows the background estimation process for a smoke video. We
show the original frames Ii in the top row, the magnitude of the
corresponding optical flow Vi in the middle row, and the corre-
sponding weights Wi in the bottom row. Intuitively speaking, we



Figure 4: Background estimation.

assume that at a pixel with low magnitude |Vi(x)|, Wi(x) assures
us a high probability of obtaining the correct background color. The
rightmost part of Fig. 4 shows the estimated background B and the
average of Wi; i.e., W avg =

∑M
i Wi/M , where M is the number

of frames. We can see some smoke remaining in B, and W avg is
dark around this area; i.e., it has low values.

2.2 Estimation of the Initial Alpha Matte

Given the estimated background B, we estimate the initial alpha
matte Ainiti by calculating the color difference between each frame
Ii and B at every pixel. We assume that a three-dimensional (3D)
vector of red, green, and blue channels is assigned to each pixel of
Ii and B, and a single scalar value for the luminance channel is
assigned to each pixel of Ainiti . We compute the initial alpha matte
of Ii as follows:

Ainiti (~x) =
1

1 + e−g(|Ii(~x)−B(~x)|−t) , (4)

which is a sigmoid function of color difference. g and t control
the steepness and the offset of the function. Fig. 5-a shows the
sigmoid function obtained by setting g and t equal to 101.4 and
0.18, respectively. Before calculating the color difference, we apply
a Gaussian blur to remove the noise from Ii and B. The size of the
Gaussian kernel is set at 5.0 throughout our experiments. Figs. 5-
b, c, and d show the resulting initial alpha matte. Note that there
are many artifacts; e.g., the texture patterns of the blocks of the
background wall can be seen in the figure.

Figure 5: The sigmoid function and the initial alpha matte.

We design Eq. 4 as a heuristic with two requirements: user con-
trollability and nonlinear smoothness. Most of the existing image-
matting methods use a trimap or scribbles, designed via a user
heuristic, as input [Sun et al. 2004; Levin et al. 2008; Gastal and
Oliveira 2010]. Eq. 4 reflects this; it allows the user to design a
rough hint for an initial alpha matte, similar to the way in which a
trimap or scribbles are designed by user intuition, independently of
any equation.

2.3 Refinement of the Alpha Matte

The initial alpha matte constructed by the user gives the overall
region of the fluid. However, artifacts from the texture patterns of
the background remain, and we want to remove them.

Our idea for refining the initial alpha matte is based on gradient-
domain image processing. Fig. 6 shows an overview of the pro-
cedure. We begin by computing the horizontal and vertical im-
age gradients (Figs. 6-b and c) of the initial alpha matte (Fig. 6-a).
Then we process these so that only gradients related to the smoke
are preserved, and the other gradients are attenuated (Figs. 6-d and
e). Finally, we integrate the processed image gradients to create
the refined alpha matte (Fig. 6-f). To obtain the image gradients,

Figure 6: An overview of the refinement of the alpha matte.

we simply compute the horizontal and vertical differences between
neighboring pixels. We formulate the integration as a constrained
least-squares optimization:

argmin
a1,...,aN

E =
∑
p

∑
q∈ν(p)

(ap − aq − gpq)2 +
∑
p

λp(ap − ainitp )2,

(5)

where {a1, ..., aN} are all of the pixel values of the refined alpha
matte, p denotes a pixel position, ν(p) denotes the set of pixel po-
sitions of the horizontal and vertical neighbors of p, gpq is the pro-
cessed gradient between p and q, corresponding to Figs. 6-d and
e, λp is the weight of the constraint at p, and ainitp is the pixel
value of the initial alpha matte Ainiti at p. To minimize the en-
ergy function, we use the Poisson solver with the effective pre-
conditioner [Szeliski 2006], which is implemented via the GPU.
We set the maximum number of iterations of the conjugate gradient
method at 80. To obtain the refined alpha matte, at every pixel we
must adequately specify 1) the gradient gpq , and 2) the weight of
the constraint λp. We explain how to specify each of these.

To compute gpq as shown in Figs. 6-d and e, we preserve the gradi-
ents found only in Ainiti , and attenuate the gradients shared by the
frame Ainiti and the estimated background B. Our idea is similar
to the “contrast attenuation” of Background Cut [Sun et al. 2006].
Background Cut attenuates a gradient in Ainiti when the magnitude
of the gradient at the same pixel position in B is large. It success-
fully extracts only gradients found uniquely in Ainiti . However,
attenuation based solely on the magnitude of the gradient is not
sufficient to satisfy our goal. We process gradients more carefully;
we attenuate the gradient at a pixel position around which a similar
texture pattern is shared by Ainiti and B.

To describe the features of a texture pattern, we consider a patch of
5×5 resolution around a pixel position (Fig. 7-a). In this patch, we
compute the oriented gradient at every pixel, and create a histogram
of these oriented gradients. We include eight orientations, but the
dimension of the histogram is only four, since an orientation and
its reverse share a single bin, as shown in Fig. 7-a. Each bin con-
tains the total of the magnitudes of all gradients whose orientations



correspond to the orientation the bin represents. The histogram is
finally normalized so that the total of all bins is equal to one.

At every pixel position, we compute the Euclidean distance be-
tween the histograms ofAiniti andB. Fig. 7-d shows the result. The
intensity at each pixel position describes the difference between the
texture patterns of Ainiti (Fig. 7-b) and B (Fig. 7-c). A gradient
ginitpq in Ainiti is attenuated as follows:

gpq = ginitpq (1− e−d
2
p/K

2

), (6)

where dp is the Euclidean distance (Fig. 7-d) at p, and K is set
equal to 0.01 throughout our experiments. The attenuated image
gradients gpq are shown in Figs. 6-d and e. The texture patterns
of the blocks of the background wall are removed from the image
gradients, and also from the resulting refined alpha matte.

Figure 7: (a) We compute oriented gradients in a 5 × 5 patch and
create a four-dimensional histogram of these gradients to describe
the features of a texture pattern. (b) The initial alpha matte Ainiti .
(c) The background B. (d) Feature similarity as the Euclidean dis-
tance between Ainiti and B. Note that the yellow boundary is over-
laid to show the corresponding region. The area of darker values
contains strong similarities, where the gradients will be attenuated.

Fig. 8 compares our attenuation method to that of Background
Cut [Sun et al. 2006]. Background Cut attenuates a gradient sim-
ply when the corresponding background gradient is large. Because
the brick wall is highly textured (i.e., has many large gradients), it
attenuates the gradients in the smoke region. As a result, the ex-
tracted smoke becomes smooth and flat (Fig. 8-a). To solve this
problem, we introduce texture pattern similarity. The gradients are
attenuated only when the texture patterns match, which preserves
the original smoke texture more faithfully (Fig. 8-b).

Figure 8: Comparison of the attenuation methods.

We specify a pixel as a constraint when the pixel value of the initial
alpha matte is extremely large or small. When ainitp is greater than
0.8 or less than 0.02, we set λp equal to 0.01. Otherwise, we set λp
equal to zero.

2.4 Foreground Estimation

We estimate the foreground by almost the same method used for the
refinement of the alpha matte. We process the red, green, and blue
channels independently, solving the constrained least-squares opti-
mization separately for each color channel. We compute the hori-
zontal and vertical image gradients of Ii, attenuate them in the same

manner as Eq. 6, and integrate them to estimate the foreground. In
Eq. 5, we let ai be the intensity of the foreground, and ainitp be the
intensity of Ii. For the attenuation of the image gradient, we use
Eq. 6, letting ginitpq be the gradient in Ii, and dp be the Euclidean
distance between the texture patterns Ii and B. As for constraints,
we specify a pixel as a constraint only when the pixel value of the
initial alpha matte is extremely large. When ainitp is greater than
0.8, we set λp equal to 0.01, but this time we ignore pixels whose
values are extremely small. Fig. 9 shows the resulting foreground.

Figure 9: (a) The original video frame, (b) the refined alpha matte,
(c) the estimated foreground, and (d) the composite with a green
background.

3 Results and Discussion

We apply our method to various fluid videos containing smoke
and explosions. The videos are selected from the DynTex
database [Péteri et al. ] and the internet. Each video shows a fluid
flowing in front of a static background. The fluids have both sparse
and dense parts, and the backgrounds include complex texture pat-
terns. Information on each result is given in Table 1. All results, and
comparisons with the extractions performed by the difference matte
function of Adobe After Effects, are also given for our supple-
mentary video. All computations are carried out using a notebook
PC with an Intel(R) Core(TM) i7 1.87 GHz CPU and an NVIDIA
Quadro FX 3800M GPU.

Employing our system, the user begins the process of fluid extrac-
tion by loading a video into the system. The system spends several
minutes estimating the background, most of it on the computation
of the optical flow. Then the user creates the initial alpha matte by
manipulating the slider bars of t and g. This process is fully inter-
active; i.e., the user can check the alpha matte in real time. When
a satisfactory initial alpha matte is obtained, the user pushes the
button and the system proceeds to apply gradient-domain image-
processing to every frame. Finally, when the system finishes pro-
cessing the last frame, a video sequence of the extracted fluid is
obtained. We found that t = 0.18 and g = 101.4 are good default
settings for the parameters.

Figs. 9 and 10 show some successful results. In Fig. 9, because the
smoke is relatively sparse, the background is successfully estimated
(Fig. 3-b). A small amount of smoke remains, but it does not create
a major problem for the smoke extraction. In Fig. 10, we compare
the results obtained from the difference matte of Adobe After Ef-
fects and our method. The red arrows indicate the area where our
method successfully removes the texture pattern derived from the
background: the edges and tile patterns of the background.



Figure 10: The extracted fluids from Explosion2 and Explosion3.

Fluid Video Frames Resolution Time
Smoke1 883 352×288 2.92

Explosion1 209 480×360 6.31
Explosion2 947 640×360 5.0
Explosion3 609 640×360 6.0

Table 1: For each fluid video, we list the number of the frames, the
resolution, and the average time (seconds) per frame required to
compute the extraction.

3.1 Limitations and Future Work

Because our method attenuates image gradients, the results tend
to be blurry, because of both the blurred foreground and the alpha
matte. Fig. 1 illustrates the phenomenon; the contrast and texture
patterns of the exploding fire are reduced in the result. This sug-
gests that we must find a more delicate technique for selecting the
gradients to be attenuated. This will be the subject of our future
work.

Our method relies on the quality of the initial alpha matte, which is
based on color differences. As a result, when a pixel in a fluid has
a color very similar to that of the background, it is often estimated
as a background pixel. Fig. 11 shows an example of smoke flowing
slowly across the sky. The background (Fig. 11-b) is not success-
fully estimated because of the extremely dense smoke. In addition,
the similarity in color between the smoke and the background is
high, creating an undesirable hole in the initial alpha matte (Fig. 11-
c). Our method attempts to remove the hole by attenuating the gra-
dients around the hole. The boundary of the hole becomes blurry,
but remains in the refined alpha matte (Fig. 11-d). To solve this
problem, we plan to estimate the initial alpha matte by relying not
only on color differences, but also on other information, such as
fluid motion.

Figure 11: Failure caused by small color differences.
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