
Fluid Volume Modeling from Sparse Multi-view Images by Appearance Transfer

Makoto Okabe1,4 Yoshinori Dobashi2,4 Ken Anjyo3,4 Rikio Onai1
1The University of Electro-Communications 2Hokkaido University 3OLM Digital, Inc. 4JST, CREST

Abstract

We propose a method of three-dimensional (3D) modeling of volu-
metric fluid phenomena from sparse multi-view images (e.g., only
a single-view input or a pair of front- and side-view inputs). The
volume determined from such sparse inputs using previous meth-
ods appears blurry and unnatural with novel views; however, our
method preserves the appearance of novel viewing angles by trans-
ferring the appearance information from input images to novel
viewing angles. For appearance information, we use histograms
of image intensities and steerable coefficients. We formulate the
volume modeling as an energy minimization problem with statis-
tical hard constraints, which is solved using an expectation maxi-
mization (EM)-like iterative algorithm. Our algorithm begins with
a rough estimate of the initial volume modeled from the input im-
ages, followed by an iterative process whereby we first render the
images of the current volume with novel viewing angles. Then,
we modify the rendered images by transferring the appearance in-
formation from the input images, and we thereafter model the im-
proved volume based on the modified images. We iterate these op-
erations until the volume converges. We demonstrate our method
successfully provides natural-looking volume sequences of fluids
(i.e., fire, smoke, explosions, and a water splash) from sparse multi-
view videos. To create production-ready fluid animations, we fur-
ther propose a method of rendering and editing fluids using a com-
mercially available fluid simulator.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: image-based modeling, natural phenomena animation,
volume modeling, texture analysis/synthesis, single-view modeling

1 Introduction

Visual effects of fluid phenomena, such as fire, smoke, and explo-
sion, are indispensable in modern movie production, and fluids have
been important research topics in computer graphics for decades.
However, the creation of fluid animations remains a difficult and
time-consuming task, which often becomes a bottleneck in the pro-
duction workflow.

There are three important methods that are commonly used to cre-
ate fluid animations. The first is a physics-based fluid simulation,
which allows users to design a wide variety of realistic fluids [Brid-
son and Müller-Fischer 2007]; however, this approach is often dif-
ficult to apply, even for experts, because the inputs to a fluid simu-
lator (i.e., numerical parameters) are very different from the output

Figure 1: We model the natural-looking volume of fluids from
sparse multi-view images (e.g., only a single-view (left) or a pair of
front and side views (right)). We create the production-ready fluid
animation using a volume sequence of fluids modeled from sparse
multi-view videos. A fluid simulator allows users to further edit
the appearance, behaviour, and shape of fluids (e.g., adding more
turbulence (left)).

(appearance, behavior, and shape of fluids). The second method is
to make a composite of fluid videos [Bhat et al. 2004]. Produc-
tion companies typically have databases of fluid videos, whereby
the artist chooses an adequate video from it, and edits and overlays
it onto the scene in the post-production process. However, because
fluid videos are two-dimensional (2D), it is difficult to cope with 3D
effects; camera paths or lighting cannot be edited, and stereoscopic
effects are not possible. The third method is image-based modeling,
which takes multi-view videos of fluid phenomena and models the
volume sequence [Hasinoff and Kutulakos 2007; Ihrke and Magnor
2004; Gregson et al. 2012]. Here, the input data are videos (i.e.,
sequences of images), which clearly correspond to the output (i.e.,
a volume sequence). The resulting volume sequence appears real-
istic, and is suitable for 3D effects; however, problems result in that
there are difficulties preparing multi-view inputs, which require a
studio setup with a large number of cameras.

In this paper, we propose a method of image-based modeling of
fluids, which takes sparse multi-view images (e.g., only a single-
view or a pair of front and side views). Figures 1 and 2 illustrate
typical results obtained by our method. As will be demonstrated
in this paper, while significantly reducing the number of required
cameras, our method still produces high-quality and editable 3D
fluids. Our method can thus provide high-quality, efficiency and
flexible usability at the same time, for modeling 3D fluids. This is
the main feature of our method, which has never been achieved by
previous work.

When reducing the number of inputs, the visual information may
become insufficient to model the volume. The top row of Figure 2
shows the volume modeled from a pair of front- and side-view in-
puts using the least squares method (LSM) [Kak and Slaney 1988].
This appears blurry and unnatural with novel viewing angles. Here,
we ask why these images appear blurry and unnatural. To answer
this question, we assume the following: We recall the appearance
of the inputs (see the leftmost and rightmost panels of Figure 2),
and expect that the volume should have a similar appearance, even
with novel viewing angles.

Our method is intended to live up to this expectation. Our technical

Figure 2: The leftmost and rightmost images are a pair of front-
and side-view inputs of fire. The top row shows the volume mod-
eled using LSM, and the bottom row shows the volume modeled by
our method. Since our method models the volume preserving the
appearance with novel viewing angles, the volume appears more
natural and more similar to the inputs.

contribution lies in the novel energy function of volume modeling
with appearance preservation and the simple and efficient method
for minimizing it. As shown in the bottom row of Figure 2, the vol-
ume modeled using our method appears more similar to the inputs
(i.e., sharper) with novel viewing angles. We perform a number of
experiments, which clearly demonstrate the validity of the mathe-
matical formulation. We find that the appearance information sig-
nificantly improves the quality of the modeled volume, which is not
possible by only pursuing the exactness of the volume.

We also note how artists use databases of fluid videos in a produc-
tion workflow. The videos in the database are never used directly,
and are always modified to obtain desired and never-seen-before
animations. To satisfy such desires of the artists, we propose an
efficient incorporation method using a commercially available fluid
simulator, in which the user can further edit the fluid animation by
modifying the rendering and simulation parameters. The resulting
animations illustrate the potential of our approach in conjunction
with graphics applications, including movie and video game pro-
duction.

The purpose of our method is to not precisely reconstruct the vol-
ume, but rather, to effectively create a fluid animation using the
volume sequence modeled from a sparse set of videos as a guide.
We of course know that precise reconstruction from a single image
or a pair of images is impossible. Our approach is particularly use-
ful in cases where we use the input images as an initial reference,
rather than the goal of precise reconstruction.

2 Related work

2.1 Image-based tomographic reconstruction

There are two major categories of tomographic reconstruction al-
gorithm [Kak and Slaney 1988]. The first is direct methods (e.g.,
filtered back projection), which derive the analytical inverse conver-
sion from the input images to a volume in advance using a Fourier
transform and calculus. The second is iterative methods that for-
mulate the relationship between the input images and a volume as
an energy function that is minimized using various iterative algo-
rithms. Direct methods typically require highly dense multi-view
inputs; however, because these are often difficult to prepare for flu-
ids, iterative methods are more commonly used for fluid volume
modeling.

Hasinoff and Kutulakos proposed an image formation model for

flames, and represented the volume as a linear combination of flame
sheets; given the input images, the best combination is found in the
least squares sense [2007]. Ihrke and Magnor modeled the vol-
ume of flames by minimizing the least squares energy using the
conjugate gradient (CG) method [2004]. Atcheson et al. captured
3D gas flows by using the time-resolved Schlieren tomography sys-
tem [2008]. Gregson et al. proposed the use of stochastic tomogra-
phy, which minimizes the energy using random walks [2012]. This
method empirically finds the pretty good solution to convex energy
functions, which allows the inclusion of sophisticated regulariza-
tion terms (e.g., L1 energies) into the function (the convergence of
the algorithm is discussed in more detail in [Gregson et al. 2013]).
These iterative methods model fluid volumes with satisfactory ap-
pearance; however, they require a large number of images with mul-
tiple viewing angles as input data. We propose a novel non-convex
energy function and an iterative algorithm to solve this problem,
which achieves volumes with a satisfactory appearance, even from
single-view images. Klehm et al. proposed tomography-based vol-
ume painting [2013] that takes an existing volume as input, and
allows users to edit its color rather than its shape. Our goal, on the
other hand, is to model the volumetric shape of fluids.

2.2 The other methods of fluid capture

Specialized hardware tools are proposed to capture fluid phenom-
ena [Hawkins et al. 2005; Gu et al. 2013]; we wish to develop a
more casual technique that non-experts can use. Liu et al. pro-
posed the method of single-view modeling of smoke [2011], which
represents smoke as a thin, smooth surface, and does not model
volumetric fluid phenomena. Wenger et al. proposed the method
for single-view modeling of astronomical nebulae, which models a
maximally axisymmetric volume [2013]. Li et al. captures water
phenomena from a single-view video, which are not volumetric but
height field water surfaces [2013].

2.3 Solid texture synthesis

Solid texture synthesis methods model the volume from single or
multiple example images. Pixel-based methods model volumetric
textures with a satisfactory appearance [Heeger and Bergen 1995;
Wei 2002; Qin and Yang 2007; Kopf et al. 2007; Dong et al. 2008].
Element-based methods model volumetric textures, while preserv-
ing the structures of example images or images that the user spec-
ifies [Jagnow et al. 2004; Takayama et al. 2008; Ma et al. 2013].
All of these methods are good at modeling volumetric textures in
which high frequency texture patterns are dominant; however, they
are difficult to use for modeling the overall shapes of fluids. Our
method addresses this problem by filling the gap between texture
synthesis and tomographic reconstruction approaches.

3 Our approach

We define a global energy function to mathematically formulate the
assumption that we recall the appearance of the inputs, and expect
that the volume should have a similar appearance, even with novel
viewing angles (Section 1). Let I = {iθ : θ ∈ Θ} denote the set of
inputs with multiple viewing angles, where Θ is the set of viewing
angles at which the inputs are given. iθ represents the input image at
a viewing angle of θ degrees. Let v denote the volume that we wish
to model. We assume that each input iθ has dimensions of w × h
pixels for all θ, and that the volume v has dimensions of w×h×w
voxels. We consider x-, y-, and z-axes in the volume space and u-
and v-axes on the view plane. Since we consider the orthographic
projection, the relations between the volume space and the view
plane are u = x cos θ+z sin θ and v = y, where θ is defined on the

Figure 3: Overview of our approach.

x-z plane as the angle from the x-axis, rotating counter clockwise
(when θ = 0, the view plane is on x-axis).

Let A denote the set of viewing angles (in degrees) at which we
want to measure the appearance similarity: we use 180 viewing
angles horizontally around y-axis in all of our experiments (i.e.,
A = {0, 1, 2, ..., 179} and Θ ⊂ A). We consider a very large set
of images Tα for each viewing angle of α(∈ A) degrees, where
t ∈ Tα is an w × h-pixel image that has a similar appearance to
the input images I . To measure the similarity of the appearance of
the images, we use the histogram of image intensities and steerable
coefficients that is used for image analysis/synthesis [Heeger and
Bergen 1995]. Let φk(t) denote the value in the k-th bin of the
histogram of t. We define Tα = {t : φk(t) = cα,k, ∀k}, where
cα,k is the value in the k-th bin of the histogram and is computed
based on I in Section 3.2.

We define our energy function E as follows:

E =
∑
α∈A

|Bαv − oα|2, (1)

subject to

{
oα = iα (α ∈ Θ)

oα ∈ Tα (α 6∈ Θ)
(2)

where Bα is a matrix representing the ray-casting operation, and
Bαv renders the image of the volume v at a viewing angle of α
degrees. Because we always consider fluids as emissive media, Bα
adds a voxel value to each ray passing through it. We want the
modeled volume v to appear the same as iα at the input views,
and to appear similar to these inputs I at novel views, which Eq. 2
imposes as hard constraints (i.e., oα is equal to iα at the input views
and belongs to Tα at novel views).

The energy function in Eq. 1 and Eq. 2 is non-convex and has an
infinite number of local minima. To model the volume as a good
local minimum, we begin with an initial volume, and estimate v
iteratively by refining this volume to decrease the energy. Figure 3
shows an overview of our iterative algorithm. Given multi-view
inputs (e.g., only front and side views (Figure 3-a)), we model the

initial volume vi (Figure 3-b) using LSM:

vi = arg min
v

∑
θ∈Θ

|Bθv − iθ|2. (3)

This initial volume appears the same as the input images with the
input views but appears blurry and unnatural with novel views, sim-
ilarly to that shown in the top row of Figure 2. Grid artifacts are
visible when viewed from the top, as shown in Figure 3-b.

During each iteration, we alternate between oα and v as variables
with respect to which the energy (see Eq. 1 and Eq. 2) is minimized.
First, we fix v, and update oα by minimizing the energy. We solve
this minimization for each viewing angle independently, i.e., we
update oα so that it minimizes |Bαv − oα|2 with the constraints
of Eq. 2. Because this problem is difficult to precisely solve, we in-
stead propose an approximate solution. We render the image of the
current volume as o′

α = Bαv (Figure 3-c). We modify the blurry
and unnatural appearance of o′

α so that the modified image oα has
similar appearance to the inputs. We use a histogram-matching op-
eration so that oα satisfies the statistical constraints φk(oα) = cα,k
for all k (Figure 3-d). Then, we fix oα and update v: we model the
volume from the modified images oα using LSM (Figure 3-e). The
appearance of the modeled volume is improved compared to the
previous iteration.

This iterative method is not identical to the expectation maximiza-
tion (EM) algorithm; however, the two are algorithmically similar.
Such EM-like approaches are commonly used in texture synthe-
sis and video completion methods [Kwatra et al. 2005; Kopf et al.
2007; Wexler et al. 2007]. In our case, the E-step and M-step corre-
spond to the updates of v and oα, respectively. Our E-step performs
an exact minimization via LSM; however, our M-step is an approxi-
mate solution. Now recall that Tα is the set of images prescribed by
the histogram of the image intensities and steerable coefficients. If
Tα were a convex manifold, and our modification corresponds to an
orthogonal projection of o′

α onto Tα, oα exactly minimizes the en-
ergy. As discussed in [Portilla and Simoncelli 2000], the histogram-
matching operation does achieve an orthogonal projection, but Tα
is non-convex. As a result, oα does not exactly minimize the en-
ergy, which is the major reason for difficulties in formally guar-
anteeing convergence of our iterative algorithm. Nevertheless, our

method did not fail to converge to a satisfactory solution for more
than 1,600 examples that we have tested.

We describe the method to model the grayscale density volume
from grayscale versions of input images, so that pixels and vox-
els have a single scalar value. The pixel values in the input images
range from 0 to 255.

3.1 Volume modeling from images

In the E-step, or when modeling the initial volume vi, we model
the volume using LSM, where we minimize the least squares en-
ergy of Eq. 1 or Eq. 3 using the method of [Ihrke and Magnor
2004]. This is performed by solving the linear system of equations
dE
dv

= 0 using the CG method. According to the literature, we use
the visual hull constructed from the input images to limit voxels that
can have a non-zero value. Because the number of unknown vari-
ables whw is usually larger than the number of equations wh|A|
or wh|I|, we require regularization: we terminate the iteration of
the CG method to avoid overfitting according to the literature. We
apply a 3D Gaussian blur operation with a small kernel to reduce
the noise of the modeled volume at the end of each E-step, which
we found models a smoother result. The CG method is suitable for
implementation on a graphics processing unit (GPU), whereby the
computation will become approximately 30 times faster than our
implementation on a central processing unit (CPU).

We used the CG method, solely due to simplicity of implementation
and low computational cost. However, other iterative methods can
be used. We experimented with using stochastic tomography [Greg-
son et al. 2012]. The quality of the modeled volume was slightly
better than with the CG method in our case; however, the computa-
tional cost was significantly greater.

3.2 Appearance transfer

We apply the pyramid-based texture analysis/synthesis
method [Heeger and Bergen 1995] to transfer the appearance
of input images to modify the blurry and unnatural appearance of
the rendered images (see the top row of Figure 2). The original
method takes two images as inputs: one is a texture exemplar
and the other is a random dot image. The method transfers the
appearance of the texture exemplar to the random dot image,
and the random dot image is converted into an image with an
appearance that is similar to the texture exemplar. This transfer
process is achieved via a histogram-matching operation on the
image intensities, and steerable coefficients between the images.
Similarly with the original method, we use the third-order steerable
pyramid, which decomposes an image into an image pyramid with
four orientations. Figure 4 shows an example.

Figure 4: The four scale, third-order steerable pyramid decompo-
sition (the component of the highest frequency residual is omitted).

Since we have sparse collections of images with multiple viewing
angles, we do not use the histogram of one of them, but rather, we
make a target histogram by interpolating the histograms of the two

Figure 5: Histogram interpolation and matching.

nearest input images. Figure 5 shows an example of this process,
where input images ip and ir are given at viewing angles of p de-
grees and r degrees. Figures 5-a and 5-c are the third-scale, fourth
orientation sub-bands of the steerable pyramids of the inputs. Fig-
ure 5-b shows the corresponding sub-band of o′

q , to which we trans-
fer the appearance of ip and ir (p < q < r). Figures 5-d and 5-f
show the histograms of the sub-bands. We linearly interpolate the
value of each histogram bin to create the target histogram shown
in Figure 5-e. Finally, we apply a histogram-matching operation
to modify the sub-band of o′

q (Figure 5-b) so that it has the target
histogram (Figure 5-e).

Here, we describe this process in mathematical form. We consider
the histogram for an image i, which is formed by concatenating all
of the histograms of image intensities and steerable coefficients of
i. Let φk(ip) and φk(ir) denote the k-th bin of the concatenated
histogram of ip and ir . We linearly interpolate these to create the
k-th bin of the target histogram:

cq,k =
(r − q)φk(ip) + (q − p)φk(ir)

r − p . (4)

The histogram-matching operation modifies o′
q so that the modified

image oq satisfies φk(oq) = cq,k for all k.

Our implementation of appearance transfer is similar to the orig-
inal method [Heeger and Bergen 1995]. We independently apply
the histogram-matching operation to each sub-band of the steerable
pyramid of o′

q . Then, we collapse the steerable pyramid to recon-
struct the image to which we finally apply the histogram-matching
operation of the image intensities to obtain oq .

3.2.1 Validity of linear interpolation

Histogram interpolation is based on the observation that his-
tograms of rendered images of a volumetric scene change relatively
smoothly as a function of the viewing angle. We render the im-
ages of the volume of the synthetic fire between viewing angles of
0 degrees and 90 degrees with 5-degree intervals, resulting in 19
rendered images. Figures 6-a and 6-c show the rendered images at
0 degrees and 90 degrees. Figures 6-b and 6-d show histograms
of the image intensities. The transition of the overall shapes of the
histograms between 0 degrees and 90 degrees is relatively smooth;
however, it is often non-linear. For example, the black lines in
Figures 6-e, 6-f, and 6-g show the observed transitions of the his-
tograms at the 5th, 13th, and 21st bin, respectively. Whereas the
transition at the 5th and 21st bins was approximately linear, the
transition at the 13th bin was highly non-linear. Nevertheless, our
method linearly interpolates all of the bins, as shown by the or-
ange dotted lines. The reason for the choice of linear interpolation

is that it is simple to implement and guarantees smoothness of the
transition. We have discussed histograms of image intensities here;
however, the same discussion applies to histograms of steerable co-
efficients (the steerable pyramid is a linear image decomposition).

Figure 6: Transitions of the histogram bins between viewing angles
of 0 degrees and 90 degrees.

Although linear interpolation is not always accurate, we demon-
strate its effectiveness by comparing the results of appearance trans-
fer with and without linear interpolation. The top row of Figure 7
shows the rendered images of the volume modeled using Figures 6-
a and 6-c. We apply appearance transfer with linear interpolation,
and the second row of Figure 7 shows the results: the rendered
images are successfully modified. In the third row of Figure 7,
we apply appearance transfer without linear interpolation (i.e., we
transfer the appearance information of the front input (Figure 6-a)
and modify the images of all of the viewing angles). The modified
image at 15 degrees is similar to that of the second row; however,
artifacts appeared around the fire at viewing angles of 45, 60, and
75 degrees. Figure 8 emphasizes the artifacts showing the same
images as the red and green rectangles in Figure 7 using the jet col-
ormap. Such artifacts introduce artifacts in the resulting volume in
the E-step.

Even if a more sophisticated non-linear interpolation is used, we
doubt that it will significantly improve the quality of appearance
transfer. The fourth row of Figure 7 shows rendered images of the
synthetic fire. The bottom row of Figure 7 shows the images mod-
ified using appearance transfer using the ground truth histograms
(i.e., the histograms of the images in the fourth row of Figure 7
were used to modify the images). The qualities of the second and
bottom rows of Figure 7 are comparable visually, meaning that even
if a more sophisticated non-linear interpolation is used to produce
the ground truth histograms, they will not improve the quality of
appearance transfer significantly.

4 Animation with a fluid simulator

Given sparse multi-view video data as input, we apply our method
described in Section 3 to the corresponding video frames, and
model the volume sequence. To further create a production-ready
fluid animation, we address the following two issues. First, because
we model the volume independently on a frame-by-frame basis,
temporal coherence is not guaranteed. Second, we wish to allow
users to further edit the appearance, behavior, and shape of fluids.
To improve the temporal coherence and editability, we present a
simple, but efficient method to incorporate our method into a fluid
simulator. In principle, any fluid simulator can be used; however,
we chose Autodesk Maya 2015 and its built-in simulator. To use
the simulator, we should estimate the velocity fields from the input

Figure 7: Modified images using various histograms.

videos. Gregson et al. proposed a sophisticated method to esti-
mate the physically plausible dense velocity fields from multi-view
video images [Gregson et al. 2014]: since our goal is not to es-
timate precise velocity fields, but rather to improve the quality of
fluid animations, the simpler method will suffice.

We estimate the approximate 3D optical flow using the input videos,
and then use this to control fluid motions using the simulation. Let
ωt denote the approximate 3D optical flow at the t-th frame that we
wish to estimate, and let ωtx, ωty , and ωtz denote the x-, y-, and z-
components thereof. Let f tu,θ and f tv,θ denote horizontal and verti-
cal components of the 2D optical flow computed using [Werlberger
et al. 2010] between t-th frame and (t + 1)-th frame in the input
video at a viewing angle of θ degrees. The size of ωt is w× h×w

Figure 8: Artifacts pointed by the arrows appear around fire with-
out interpolating histograms between views.

voxels, which is the same as all of the simulation grids in the sim-
ulator. The size of f tu,θ and f tv,θ is w × h pixels. We estimate ωt

by taking the weighted average of the 2D optical flow for all the
viewing angles of the input videos:

ωtx(x) =

∑
θ∈Θ f tu,θ(x cos θ + z sin θ, y) cos θ∑

θ∈Θ | cos θ|
, (5)

ωty(x) =

∑
θ∈Θ f tv,θ(x cos θ + z sin θ, y)

|Θ| , (6)

ωtz(x) =

∑
θ∈Θ f tu,θ(x cos θ + z sin θ, y) sin θ∑

θ∈Θ | sin θ|
, (7)

where x = (x, y, z)T is a voxel position.

Letψt denote the velocity field of the simulator at t-th frame, which
we wish to modify in the manner similar to [Thürey et al. 2006].
While we wish to control the low frequency, overall fluid motions
in ψt by the approximate 3D optical flow ωt, we wish to preserve
the high frequency, detailed fluid motions in ψt:

r = ψt −G(ψt), (8)

ψ′ = G(ωt) + r. (9)

Let G() denote a 3D Gaussian blur operation, and the high fre-
quency, detailed components of ψt are extracted as the residual r
in Eq. 8. To control the overall fluid motions using ωt, its low fre-
quency components G(ωt) are added to r in Eq. 9. This preserva-
tion of these details is important: if we simply use the approximate
3D optical flow as the velocity field (i.e., ψ′ = ωt), the interesting
fluid phenomena created by the simulator (e.g., vortices and tur-
bulence), would disappear. Also, note that the replacement of low
frequency components in Eq. 8 and Eq. 9 (i.e., G(ψt) with G(ωt))
does not guarantee temporal coherence, which means that the tem-
poral coherence of the approximate 3D optical flow ωt is required.

Let vt denote the volume modeled using our method at t-th frame,
and let dt denote the density field of the simulator at t-th frame.
We modify the density field as follows:

d′(x)=

{
vt(x)λ+ dt(x)(1− λ) (dt(x) < vt(x))

dt(x) (dt(x) ≥ vt(x))
(10)

where λ is a weight describing how much the density is updated
by the volume (we used λ = 0.2). Eq. 10 adds the volume to the
density at voxel positions where the density value is smaller than
the voxel value. We perform addition, but do not perform subtrac-
tion in Eq. 10. Instead, we manipulate the dissipation parameter of
the simulator, which defines the rate at which the density gradually
vanishes with time. The resulting animation is smoother than when
performing the subtraction in Eq. 10.

Given the modified velocity and density fields, ψ′ and d′, we per-
form the simulation using the built-in simulator of Autodesk Maya
2015, which solves the Navier–Stokes equations, and updates all of
the simulation grids (i.e., we obtain ψt+1 and dt+1). We start the
simulation with ψ0 = ω0 and d0 = v0, iterate these processes to
create the animation frames. The smooth advections and gradual
update of the density (Eq. 10) guarantee temporal coherence. The
use of the simulator also allows the user to further edit the shading
and physics parameters to control the fluid phenomena.

5 Results and discussion

We apply our method to real and synthetic multi-view input videos.
The supplementary video shows the resulting fluid animations. To

apply color to fluid animations, we use the built-in shader from Au-
todesk Maya 2015, where a density value is mapped to a color. For
each fluid animation, we manually select appropriate parameters for
shading and fluid simulation. We used the light probes from Paul
Debevec’s light probes gallery [Debevec 2001; Debevec 2006] to
render some of the fluid animations.

We modeled the fluids using a machine with an Intel(R) Core(TM)
i7–4820K CPU (3.70 GHz), 16.0 GB of memory, and an NVIDIA
GeForce GTX 770 GPU. The computational expense was propor-
tional to the volume resolution. For the real fire (Figure 2), since
the size of the input images is 271 × 144 pixels, we modeled the
volume whose size is 271 × 144 × 271 voxels. We measured the
average time for each step: initialization required 10.6 seconds, the
E-step required 15.9 seconds, and the M-step required 14.0 sec-
onds. We iterated the algorithm eight times, and the total time to
model the volume was 250 seconds. Since our method described
in Section 3 does not take temporal coherence into account, we can
process video frames independently. We distributed video frames
to multiple computers and modeled volumes in parallel. Speed-up
is simply proportional to the number of computers.

Front- and side-view input videos of real fire Figures 1-right
and 2 show the volume modeled from a pair of front- and side-view
images of real fire. To capture videos of the fire, we used a simple
studio setup shown in the supplementary video. Two Sony Handy-
cam digital cameras were placed so that the optical axes were or-
thogonal. We created a fire by burning paper on a round chair. The
background was covered using dark cloth to create efficient mat-
ting. Since the distance between each camera and fire was long
enough to assume the orthogonal projection, we did not use cam-
era calibration, and instead aligned the timing, scale, and transla-
tion manually between the two videos using commercially available
video editing tools. Given these two aligned videos, our method au-
tomatically models the volume for each frame.

Figure 9: Volumes modeled by LSM, ST-SAD, and our method from
a pair of front- and side-view inputs of synthetic fire.

Sparse multi-view images of synthetic fire Figure 9 shows the
volume modeled from a pair of front- and side-view images of syn-
thetic fire (Figure 3-a). We prepared the inputs using a fluid sim-
ulator and a volume rendering technique. Figure 9 shows the vol-
umes modeled by LSM, stochastic tomography with an L1 sum-
of-absolute-differences regularization (ST-SAD) [Gregson et al.
2012], and our method (described in Section 3 without the use of
a fluid simulator). For ST-SAD, we used 4 billion mutations and
10,000 sample chains. Figure 9 shows the volumes at an interme-
diate (45-degree) viewing angle. Compared with the volumes mod-
eled using LSM and ST-SAD, our result appears sharper and more
similar to the inputs (Figure 3-a) even with novel views. While
ST-SAD models the volume constraining the internal structures to
have smoothness and sparse sharp edges, our method does not con-
strain the internal structures, but it constrains only the external ap-
pearance. Figure 9-d is the ground truth image (i.e., the original
simulation data seen at a viewing angle of 45 degrees). Compared

with the ground truth, our result appears different; however, the
overall atmosphere and textures appear similar. Figure 10 shows
another experiment using synthetic fire: we prepared six input im-
ages rendered with 30-degree intervals. We rendered the images
of the volumes modeled by LSM, ST-SAD, and our method with
a novel viewing angle of 15 degrees (see the bottom row of Fig-
ure 10). Our result still appears blurry compared with the ground
truth, but captures the features better than LSM and ST-SAD.

Figure 10: We take the six-view inputs of synthetic fire (top) and
model the volumes by LSM, ST-SAD, and our method (bottom).

Single-view modeling Figures 1-a and 11 show volumes mod-
eled from single-view videos of fluids. Figure 11 gives the in-
formation on the resolution and number of frames of each input
video. With a single input, we applied our method assuming that
a pair of front- and side-view inputs exists, where the two images
are identical. The resulting volume is symmetrical, as observed in
the horizontal slice of each volume (Figure 11). While the volumes
modeled using ST-SAD are square and have grid structures, our
method models round shapes and organic structures inside the re-
sulting volumes. These input videos include not only emissive but
also absorptive media. Since our method assumes fluids to be emis-
sive media, absorptive media are treated incorrectly: specifically,
dark smoke is usually ignored and holes are created there. Never-
theless, the modeled volumes can be used to create interesting fluid
animations as shown in the supplementary video.

Edit of fluid animations We demonstrate the incorporation of a
fluid simulator to add more detailed turbulence to our fluid anima-
tions. This is achieved by increasing the parameters for turbulence
in Autodesk Maya 2015. Figures 12-a and 12-b show the results of
an explosion without and with turbulence. We may use the veloc-
ity field based on the approximate 3D optical flow to describe the
interaction with the objects around the fluids. Figure 12-c shows
an example of the explosion that destroys a car. The car was pas-
sively advected by the velocity field, and we applied a rigid body
simulation to describe the interaction between the car and ground.

Existing methods with the fluid simulator Even if we applied
the fluid simulator to volume sequences modeled with LSM or ST-
SAD, we could not create nice fluid animations (i.e., we still found
significant grid artifacts in them; see Figure 13). Figure 14 shows
the comparison, where we added relatively strong turbulence to the
fluid animations: for all the animations, we used the same set of tur-
bulence parameters in Autodesk Maya 2015. Procedural details like
turbulence tend to relax grid artifacts; however, even when strong
turbulence is added, grid artifacts are still visible as many straight
lines in the animations with the existing methods.

Convergence As described in Section 3, it is difficult to formally
guarantee the convergence of our algorithm. However, we success-

Figure 12: Incorporation with a fluid simulator.

Figure 13: The fluid simulator and the technique of Section 4 is
applied to volume sequences of LSM, ST-SAD, and our method.

fully get close to convergence to a good solution for more than
1,600 examples that we have tested. Figure 15 shows plots of the
energy (Eq. 1) during modeling of 2-view synthetic fire (Figure 9)
and 6-view synthetic fire (Figure 10).

Comparison with [Hasinoff and Kutulakos 2007] Hasinoff et
al. proposed two algorithms for modeling volumes using front- and
side-view images: the flame sheet algorithm and the multiplica-
tion algorithm. The flame sheet algorithm is useful to model thin
surfaces; however, it cannot model a volumetric structure. The vol-
ume modeled using the multiplication algorithm appears similar to
a volume modeled using LSM (i.e., the volume appears blurry with
novel viewing angles, and grid artifacts are visible viewed from the
top). We show a comparison in the supplementary video.

Figure 14: Turbulence is added to fluid animations created using
LSM, ST-SAD, and our method.

Figure 15: Plots of the energy during modeling the volumes of syn-
thetic fire as a function of number of iterations.

Non-parametric texture synthesis for appearance transfer
We have performed the parametric texture synthesis (PTS) [Heeger
and Bergen 1995] for appearance transfer (Section 3), but it is still
not clear what will happen when we perform non-parametric tex-
ture synthesis (NPTS). We tested texture optimization (TO) [Kwatra
et al. 2005]. The original TO works similarly to PTS: the method
takes a random dot image and a texture exemplar, and converts the
random dot image into an image with an appearance that is similar
to the texture exemplar. In our case, in the M-step of our iterative
algorithm, TO takes a rendered image o′

α and all the input images
I as texture exemplars, and then converts o′

α into the modified im-
age oα. Mathematically, replacing PTS with TO affects the defini-
tion of Tα in Eq. 2: we now consider Tα = {t : t minimizes Et},
where Et is the texture energy described in [Kwatra et al. 2005].
Note that Tα in TO is the same for all α, because we do not per-
form any interpolation between views (PTS allows linearly interpo-
lating histograms readily; however, we have not found a good way
to perform interpolation for TO). We chose TO because it is one
of the methods that synthesizes textures with the highest quality.
However, volume modeling using TO was unsuccessful (Figure 16).
Since the size of local patches used for the nearest neighbor search
is an important parameter in TO, we tested multiple sizes of lo-
cal patches; however, all the volumes modeled by TO (Figures 16-
c, 16-d, and 16-e) were too dense and had grid artifacts of many
straight lines and arcs inside; the appearance at novel views is much
less similar to the inputs compared with the PTS result (Figure 16-
b). Furthermore, the energy of Eq. 1 did not decrease smoothly
like the plots in Figure 15, but it often increased and oscillated. We
believe that this failed for the following reason. In PTS case, Tα
is a very large set of images, while Tα is much smaller in the TO
case, because a local patch in oα has to appear similar to a patch
in the exemplars, which results in tighter constraints on Tα than the
appearance similarity described by histograms in PTS. As a result,
the projection of o′

α onto Tα, performed by TO, often modifies o′
α

too dramatically, which is far from the orthogonal projection.

Figure 16: We applied our method (Section 3) to the single-view in-
put (a), whose size is 141×100 pixels, and modeled the volume (b).
We replaced PTS with TO in our iterative algorithm and modeled
volumes (c-e) with various sizes of local patches. Volumes modeled
using TO were noisy and not convincing. Through all these experi-
ments, the number of views for appearance transfer is 180, and we
iterated the algorithm eight times.

Limitations in preserving the global structure We attempted
to model a volumetric tree by preparing front- and side-view im-
ages of a real tree, and applied our method to them. A tomographic
approach was used for modeling the volumetric tree from multi-
view images [Reche-Martinez et al. 2004]. However, we failed to
model the branching structure of the tree in the resulting volume
(Figure 17). Even when changing the viewpoint from the front of
the tree only slightly, the portion of the trunk inside the red circle
disappeared. This is because the texture synthesis method [Heeger
and Bergen 1995] was not able to preserve the global structure, such
as that along the branches. The trunk was scattered inside the vol-
ume. To solve this limitation, we plan to investigate other para-
metric texture synthesis methods that can better preserve the global
structure [Portilla and Simoncelli 2000].

Figure 17: The volumetric tree modeled by our method from front-
and side-view images. The trunk inside the red circle immediately
disappears when changing the viewpoint slightly.

Viewing angles for appearance transfer So far we have only
discussed side views of the volume (i.e., the viewing angle was ro-
tated horizontally around the vertical axis). The reason for this is
that most of the fluids we have investigated flow from bottom to top,
and the side views appear similar; however, the top differs signifi-
cantly. Where the top view also appears similar to the side views, it
is possible to extend our method to a larger range of viewing angles.

The number of views for appearance transfer We have per-
formed appearance transfer with 180 viewing angles (Section 3);
however, this number should be changed according to the size of
the target volume. For example, more viewing angles should be
considered to model larger volumes. We tried to use the smaller
number, e.g., 30, of viewing angles, but the quality of the resulting
volume was no good: streak artifacts appeared in the volume af-
ter applying LSM in the E-step, which were further emphasized at
subsequent iterations.

6 Conclusion and future work

We have proposed a method to create fluid animations efficiently
using sparse multi-view videos as a guide. Our method described
in Section 3 models the volume sequence from the videos. We pro-
posed an energy function for volume modeling with appearance
preservation. Our iterative algorithm successfully modeled more
than 1,600 fluid volumes. The fluid animation of the modeled vol-
ume sequence can be edited by manipulating shading and physics
parameters using the built-in fluid simulator in Autodesk Maya
2015. We have demonstrated that our method allows the user to
create production-ready fluid animations from single-view videos.

An investigation on applying NPTS methods to our framework
should be considered next. We expect that if we apply it suc-
cessfully, it might solve the limitations in preserving the global
structure, because NPTS methods are generally good at preserving
global structures such as branches (Figure 17) in the texture and
image synthesis contexts.

In this paper, we performed all the ray-casting operations using
orthographic projections, because most of the input images tested
were single-view images or we could assume an orthographic pro-
jection for the other examples. However, perspective projection and
camera calibration should be considered in a more general situation.
Extending our method to perspective projection is a future project.

Acknowledgements

We would like to thank the anonymous reviewers for their in-
sightful and constructive comments. Many thanks also go to
Hiroyuki Ochiai, Keisuke Mizutani, Takatsugu Yamaguchi, and
Ayumi Kimura for discussions and encouragements. This work
was supported by Japan Science and Technology Agency, CREST,
and JSPS Grant-in-Aid for Young Scientists (B) Grant Number
25730071. This work was partially supported by the Joint Research
Program (Short-term Collaborative Research) of the Institute of
Mathematics for Industry, Kyushu University. Yoshinori Dobashi
was partially supported by UEI Research.

References

ATCHESON, B., IHRKE, I., HEIDRICH, W., TEVS, A., BRADLEY,
D., MAGNOR, M., AND SEIDEL, H.-P. 2008. Time-resolved
3d capture of non-stationary gas flows. ACM Trans. Graph. 27,
5, 132:1–132:9.

BHAT, K. S., SEITZ, S. M., HODGINS, J. K., AND KHOSLA,
P. K. 2004. Flow-based video synthesis and editing. ACM
Trans. Graph. 23, 3, 360–363.

BRIDSON, R., AND MÜLLER-FISCHER, M. 2007. Fluid simu-
lation: Siggraph 2007 course notes. In ACM SIGGRAPH 2007
Courses, 1–81.

DEBEVEC, P. 2001. Light probe image gallery. Available at
http://www.pauldebevec.com/Probes/.

DEBEVEC, P. 2006. High-resolution light probe image gallery.
Available at http://gl.ict.usc.edu/Data/HighResProbes/.

DONG, Y., LEFEBVRE, S., TONG, X., AND DRETTAKIS, G. 2008.
Lazy solid texture synthesis. In Proc. of EGSR ’08, 1165–1174.

GREGSON, J., KRIMERMAN, M., HULLIN, M. B., AND HEI-
DRICH, W. 2012. Stochastic tomography and its applications
in 3d imaging of mixing fluids. ACM Trans. Graph. 31, 4, 52:1–
52:10.

GREGSON, J., HEIDE, F., HULLIN, M. B., ROUF, M., AND HEI-
DRICH, W. 2013. Stochastic deconvolution. In Proc. of CVPR
2013, 1043–1050.

GREGSON, J., IHRKE, I., THUEREY, N., AND HEIDRICH, W.
2014. From capture to simulation: Connecting forward and
inverse problems in fluids. ACM Trans. Graph. 33, 4, 139:1–
139:11.

GU, J., NAYAR, S., GRINSPUN, E., BELHUMEUR, P., AND RA-
MAMOORTHI, R. 2013. Compressive structured light for recov-
ering inhomogeneous participating media. IEEE Trans. Pattern
Anal. Mach. Intell. 35, 3, 555–566.

HASINOFF, S. W., AND KUTULAKOS, K. N. 2007. Photo-
consistent reconstruction of semitransparent scenes by density-
sheet decomposition. IEEE Trans. Pattern Anal. Mach. Intell.
29, 5, 870–885.

HAWKINS, T., EINARSSON, P., AND DEBEVEC, P. 2005. Acqui-
sition of time-varying participating media. ACM Trans. Graph.
24, 3, 812–815.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture
analysis/synthesis. In Proc. of SIGGRAPH ’95, 229–238.

IHRKE, I., AND MAGNOR, M. 2004. Image-based tomographic
reconstruction of flames. In Proc. of SCA ’04, 365–373.

JAGNOW, R., DORSEY, J., AND RUSHMEIER, H. 2004. Stereo-
logical techniques for solid textures. ACM Trans. Graph. 23, 3,
329–335.

KAK, A. C., AND SLANEY, M. 1988. Principles of computerized
tomographic imaging. IEEE Press.

KLEHM, O., IHRKE, I., SEIDEL, H.-P., AND EISEMANN, E.
2013. Volume stylizer: Tomography-based volume painting. In
Proc of I3D ’13, 161–168.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2d exemplars. ACM Trans. Graph. 26, 3, 2:1–2:9.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
Graph. 24, 3, 795–802.

LI, C., PICKUP, D., SAUNDERS, T., COSKER, D., MARSHALL,
D., HALL, P., AND WILLIS, P. 2013. Water surface model-
ing from a single viewpoint video. IEEE Trans. Vis. Comput.
Graphics 19, 7, 1242–1251.

LIU, Z., HU, Y., AND QI, Y. 2011. Modeling of smoke from a
single view. In Proc. of ICVRV ’11, 291–294.

MA, C., WEI, L.-Y., LEFEBVRE, S., AND TONG, X. 2013. Dy-
namic element textures. ACM Trans. Graph. 32, 4, 90:1–90:10.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric tex-
ture model based on joint statistics of complex wavelet coeffi-
cients. Int. J. Comput. Vis. 40, 1, 49–70.

QIN, X., AND YANG, Y.-H. 2007. Aura 3d textures. IEEE Trans.
Vis. Comput. Graph. 13, 2, 379–389.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. ACM Trans. Graph. 23, 3, 720–727.

TAKAYAMA, K., OKABE, M., IJIRI, T., AND IGARASHI, T. 2008.
Lapped solid textures: Filling a model with anisotropic textures.
ACM Trans. Graph. 27, 3, 53:1–53:9.

THÜREY, N., KEISER, R., PAULY, M., AND RÜDE, U. 2006.
Detail-preserving fluid control. In Proc. of SCA ’06, 7–12.

WEI, L.-Y. 2002. Texture Synthesis by Fixed Neighborhood
Searching. PhD thesis.

WENGER, S., LORENZ, D., AND MAGNOR, M. 2013. Fast image-
based modeling of astronomical nebulae. Comput. Graph. Forum
32, 7, 93–100.

WERLBERGER, M., POCK, T., AND BISCHOF, H. 2010. Motion
estimation with non-local total variation regularization. In Proc.
of CVPR 2010, 2464–2471.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE Trans. Pattern Anal. Mach. In-
tell. 29, 3, 463–476.

Figure 11: Volumes modeled from single-view videos. From left to right: a frame of the input video, the volume modeled using ST-SAD and
its horizontal slice, the volume modeled using our method (described in Section 3 without using any fluid simulator) and its horizontal slice,
and the final rendering using Autodesk Maya 2015. The jet colormap is used to visualize the slices.

