
EUROGRAPHICS 2005 / J. Marks and M. Alexa
(Guest Editors)

Volume 24 (2005), Number 3

Interactive Design of Botanical Trees using Freehand
Sketches and Example-based Editing

Makoto Okabe1, Shigeru Owada1 �2 and Takeo Igarashi1�3

The University of Tokyo1, Sony CSL2 and JST PRESTO3

Abstract
We present a system for quickly and easily designing three-dimensional (3D) models of botanical trees using free-
hand sketches and additional example-based editing operations. The system generates a 3D geometry from a two-
dimensional (2D) sketch using the assumption that trees spread their branches so that the distances between the
branches are as large as possible. The user can apply additional gesture-based editing operations such as adding,
cutting, and erasing branches. Our system also supports example-based editing modes in which many branches
and leaves are generated by using a manually designed tree as an example. User experience demonstrates that
our interface lets novices design a variety of reasonably natural-looking trees interactively and quickly.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques - Interaction Techniques

1. Introduction

3D models of botanical trees are important in geographical
landscape simulation, cityscape design, virtual reality, con-
sumer games, and other fields of 3D graphics. However, de-
signing tree models is challenging because trees have enor-
mous structural complexity.

There are two major methods for obtaining tree models.
One is a rule-based approach, such as L-systems, and the
other method places predefined generic models in a library
or modifies their parameters. Rule-based systems allow users
to design a wide variety of realistic trees. However, it is diffi-
cult for novice users to design trees of the desired appearance
using rule-based systems because the inputs to such systems
(rules and parameters) are very different from their output
(3D geometry). Moreover, while one can quickly obtain typ-
ical trees by using predefined generic models, it is often dif-
ficult or impossible to design a desired tree by modifying
predefined models.

This paper proposes a system for designing 3D botani-
cal trees based on a sketching interface and example-based
control. Sketch-based interfaces [ZHH96][IMT99] facilitate
the rapid construction of 3D models and programming-by-
example interfaces [Cyp91][MWK89] by automating repeti-
tive operations. Our contribution is to propose intuitive mod-

eling interfaces for trees, which free the user from compli-
cated rules or parameters. The modeling process in rule-
based systems can be seen as a deductive process, in that
the final 3D geometry is derived from abstract production
rules. Our sketch-based method can be seen as an inductive
process, in that the user specifies the 2D appearance of the
model directly and the system then generates a 3D structure
by inferring hidden parameters.

The main purpose of our system is to construct 3D tree
geometries from users’ 2D sketches based on the simple as-
sumption that botanical trees tend to spread their branches
in such a way that the distances between branches are as
large as possible. This enables the user to design 3D tree
geometries intuitively using standard 2D input devices. This
assumption is an overly simplistic description of the growth
process of real trees, but it is fast and general enough
for quickly designing reasonable-looking trees from typi-
cal sketches. Our algorithm also considers the fact that most
users draw branches that extend sideways and omit those that
extend toward or away from the screen.

In addition to the sketching interface, our system also sup-
ports three example-based editing modes: branch multiplica-
tion, leaf arrangement, and branch propagation. These edit-
ing modes allow the user to construct complicated trees by
providing a few examples and free the user from drawing

c� The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

Figure 1: Simple 2D sketches of botanical trees (above) and 3D polygon models, which are a red young tree, a zelkova, and a
maidenhair tree (below). The initial 3D trees were created from the 2D sketches automatically using our algorithm. Additional
branches and leaves were then attached to the trees using our prototype system. Each process took several minutes.

all individual branches or specifying rules or parameters di-
rectly. Figure 1 shows sample 2D sketches and the resulting
3D trees created using our system.

Our goal is not to simulate the principles of nature, but
to assist the user’s creative design process. Our system sup-
ports several semi-automatic modeling functions that simu-
late some of the morphological properties of natural trees,
but the user’s intention expressed in the input sketch always
has higher priority. Our current prototype system is designed
only for trees, but many of the proposed interfaces can be
used to design other 3D plants, such as flowers.

2. Previous Work

2.1. Modeling Plants

Lindenmayer proposed the formalism of L-systems [Lin68],
and Prusinkiewicz improved them [PHHM96]. Subsequent
research has expanded L-systems for simulating a wide
range of interactions between a plant and its environment
[PJM94][MP96], and for increasing realism and support-
ing the interactive modeling process by using positional in-
formation [PMKL01]. Boudon proposed a method to cre-
ate trees more intuitively and interactively taking advan-
tage of L-systems and demonstrated their method by creat-
ing models of bonsai trees [BPF�03]. Some other rule-based

approaches have also been proposed to address the limita-
tions of older L-systems [AK84][WP95]. Deussen and Lin-
termann developed the Xfrog system in order to combine
the power of a rule-based approach with the intuitiveness of
generic tree methods [DL97][LD99]. Deussen also proposed
a non-photorealistic rendering method for 3D trees [DS00]
that represents leaves as simple particles.

Other research has attempted to reconstruct 3D tree ge-
ometry from multiple photographs. Sakaguchi derived 3D
volume data from multiple photographs of a tree and recon-
structed 3D tree geometry by growing it upwards from its
roots [SO99], but this method can produce undesirable ge-
ometries and needs some heuristics. Shlyakhter proposed a
method that uses a visual hull to construct a trunk and ma-
jor branches and an L-system for finer branches [SRDT01].
Reche proposed a method to capture a real-world tree as a
volume with opacity and color values [RMMD04]. Maier-
hofer and Tobler proposed a user interface that makes it
easier to specify modeling parameters by replacing numer-
ical parameters with a more intuitive set of graphical mod-
eling primitives [MT02]. Ijiri adopted the notion of floral
diagrams and inflorescences, and proposed a method to de-
sign flowers, while preserving correct botanical structures
[IOOI05].

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

2.2. Sketch-based 3D Modeling

Many researchers have proposed methods for construct-
ing 3D models from user-defined 2D drawings. These in-
clude the reconstruction of rectilinear models covered by
planar faces by solving constraints [EyHBE97] or using
optimization-based algorithms [SL96a][SL96b], the recon-
struction of the 3D geometry of a 3D curve using en-
ergy minimization [PK89], and using symmetric relations
[TNT89].

Our particular interest is an interactive sketching inter-
face for designing 3D models using 2D gestures. The Sketch
system [ZHH96] is for designing 3D scenes consisting of
simple primitives, and the Teddy system is for designing
freeform models [IMT99]. Several extensions of the origi-
nal Teddy system have recently been proposed [ONOI04].

2.3. Example-based Interfaces

The user interface research community has been investi-
gating example-based user interfaces in which the com-
puter automates some of the repetitive tasks by observing
a user’s example operation [Cyp93]. The Eager system de-
tects repetition in the user’s operation and suggests automa-
tion [Cyp91]. In the Metamouse system, the user explicitly
trains the system by demonstration [MWK89]. Igarashi et
al. [IMKT97][IKTM98] implemented a prediction mecha-
nism on top of their beautification-based 2D drawing sys-
tem. Their system predicts the user’s next drawing operation
based on the drawing already in the scene and displays the
predicted results as multiple candidates. This helps the user
to design relatively complicated scenes without drawing all
of them manually. This idea has been extended to 3D-model
design [IH01]; like the 2D version, this system suggests op-
erations that the user is likely to do next.

3. User Interface for Modeling Trees

3.1. Overview

First, we overview the process of modeling a typical 3D tree
(Figure 2). The user begins to model a 3D tree by sketch-
ing a simple 2D tree using a mouse or pen tablet (Figure 2
(a)). After sketching a tree, the user presses the "3D" but-
ton and the system constructs 3D tree geometry from the
2D sketch (Figure 2 (b)). This process takes several sec-
onds. Now the user has a 3D tree, and manually adds or
removes branches with simple gestures. The user can also
apply example-based editing modes to generate complicated
trees. The user switches between modes by pressing the
corresponding buttons. In branch multiplication mode, the
user can add more child branches to a designated parent
branch using the existing child branches as examples (Fig-
ure 2 (c)). The leaf-arrangement mode lets the user place
leaves around a branch following typical leaf arrangement
patterns by providing a few examples (Figure 2 (d)). Finally,

branch-propagation mode copies the child branches of a par-
ent branch to other parent branches (Figure 2 (e)). The user
can undo or redo any actions while modeling a tree by press-
ing the "Undo" or "Redo" button.

(a) 2D Sketch (b) 3D Construction (c) Multiplication

(e) Propagation(d) Leaf-arragement

Figure 2: (a) The user draws a 2D sketch of a tree; (b) the
system generates a 3D tree when the user presses the 3D but-
ton; (c) a denser 3D tree model is obtained in multiplication
mode; (d) leaves are added to a branch in leaf-arrangement
mode; and (e) leaves are propagated to other branches in
propagation mode.

3.2. Sketching a 2D Tree

The user begins to model a 3D tree by sketching simple 2D
strokes that represent branches or leaves. An open stroke
makes a branch and a loop stroke makes a leaf polygon as a
bounding box for the stroke (Figure 3). An incoming stroke
is connected to the nearest existing branch and becomes its
child branch or leaf. When a branch is attached to a parent
it changes its form so that it is connected to its parent pre-
cisely. The base point moves to the nearest point along the
parent branch; the terminal point remains fixed; and the dis-
placements of the intermediate points are interpolated.

(a) (b) (c) (d)

Figure 3: Drawing a branch (a-b) and drawing a leaf (c-d).

When the user draws a branch using a single stroke, the
system applies default geometry (varying radii along the
branch) to the branch. Optionally, the user can draw a pair
of almost parallel strokes to define the detailed shape of the
branch. The two strokes correspond to the silhouette of the
branch (Figure 4). The system sweeps a circle along the two
strokes to construct the branch geometry. After a detailed

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

geometry has been specified using a pair of strokes, that ge-
ometry becomes the default setting and is then applied to
subsequent branches drawn as single strokes.

(a) (b)

Figure 4: Two strokes representing a branch’s silhouette (a)
and the resulting 3D branch geometry (b).

The user can edit branches using two gestural editing op-
erations: cutting and erasing. An editorial stroke intersecting
a branch once cuts the branch. The distal end of the branch is
erased, as are all the descendant nodes spawned on that side.
An editorial stroke intersecting a branch two or more times
erases the branch. In this case, all the descendant nodes are
erased.

3.3. Creating a 3D Tree from a 2D Sketch

The system constructs a 3D tree when the user finishes draw-
ing a 2D tree and requests its construction by pressing the
"3D" button. (This takes several seconds.) After construc-
tion, the user can rotate the tree and see it from different
viewpoints. Figure 5 shows some examples. The basic strat-
egy is to make trees spread their branches so that the dis-
tances between them are as large as possible. The system
also gives detailed depth modulation to each branch. The al-
gorithm is described in Section 4.

Figure 5: The upper snapshots are freehand sketches, and
the lower snapshots are the results of 3D construction.

After constructing a 3D tree, the user can add a branch or a
leaf by drawing a stroke as in the 2D case. The 2D strokes are
projected onto a plane that is parallel to the screen and passes
through the base point on the parent branch. The user can

also edit branches or leaves by drawing cutting and erasing
strokes.

3.4. Example-based Branch Multiplication

In this editing mode, the user can click a branch to increase
the density of its child branches, while preserving the overall
appearance of the tree. Each click adds a new branch to the
parent branch; the user can add as many branches as desired
by successive clicking. Figure 6 shows an example. The de-
tailed algorithm for computing the position, orientation, and
shape of the new branch is given in Section 4.3.

(b)(a)

Figure 6: The user adds child branches to a branch by suc-
cessive clicking.

3.5. Example-based Leaf Arrangements

This mode allows the user to place leaves according to
typical leaf-arrangement patterns (alternating patterns and
whorled patterns). The interface is similar to the user in-
terfaces proposed by Igarashi and Hughes [IH01]. The user
adds a few sample leaves manually and the system infers
possible arrangement patterns from these examples.

The system then generates further leaves based on the in-
ferred patterns and shows the results as thumbnail previews
(Figure 7). When the user likes a result, he or she clicks the
corresponding thumbnail to use it. If the user does not like
the result, he or she can ignore it and proceed to the next
operation. The current implementation supports three sug-
gestion engines. One adds leaves to the base of a given set of
whorled leaves. Figure 8 shows an example. When the sys-
tem observes a set of leaves at the same base position, it in-
fers that the user wants to use the whorled pattern and adds a
leaf to the set. The system also rearranges the existing leaves
so that they are distributed around the parent branch equally.
The user can increase the number of leaves by clicking the
corresponding thumbnail successively (Figure 8).

Another engine extends the whorled leaves along the par-
ent branch (Figure 9). When the system observes a set of
whorled leaves attached to a base position and a leaf at a
different position, it infers that the user wants to add more
sets of whorled leaves with the given spacing. The system
fills the remaining region of the parent branch with sets of
whorled leaves.

The final engine extends alternate leaves along the parent

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

Figure 7: Thumbnails are presented to the user. The user
can adopt a prediction result by clicking the corresponding
thumbnail.

Figure 8: Increasing the number of leaves in a set of whorled
leaves.

branch (Figure 10). When the system observes two leaves
placed at different positions, it infers that the user wants to
use the alternating pattern and adds additional leaves along
the parent branch. The system uses the rotational angle be-
tween the sample leaves to place new branches, generating
spirally arranged leaves.

3.6. Example-based Branch Propagation

This editing mode lets the user propagate the local arrange-
ment of branches and leaves to the entire tree. When the
user clicks a branch (reference branch), the system copies
the child branches and leaves of the reference branch and
pastes them on all other branches (target branches) on the
tree. The current system supports two types of propagation;

Figure 9: Extending whorled leaves along the parent
branch.

Figure 10: Extending alternating leaves along the parent
branch.

the user switches between them using a toggle button on the
screen.

(a) (b) (c)

Figure 11: The original state of a tree (a), propagation with
scaling (b) and propagation without scaling (c).

One type of propagation is that with scaling (see Figure 11
(b)). When the system pastes the child branches and leaves
on a target branch, it scales them so that the reference branch
matches the target branch. This mode is useful for propa-
gating detailed branching to other branches. In propagation
without scaling (Figure 11 (c)), the system pastes the child
branches and leaves without scaling. The tip of the refer-
ence branch is placed at the tip of the target branch. If the
target branch is shorter than the reference branch, the sys-
tem uses only the child branches and leaves near the tip of
the reference branch. This mode is useful for propagating
leaves around the reference branch because all the leaves are
of similar size and spacing all over the tree.

3.7. Reproduce a Tree from Overall Sketching

Once the entire modeling process is completed, the user
can duplicate the finished model using two strokes rep-
resenting the trunk and the silhouette of the new one
(see Figure 12 and Figure 19). Several previous sys-
tems take advantage of silhouettes to specify the over-
all shape of a tree, and these inspired our user interface
[BPF�03][PJM94][PMKL01][WP95]. The system changes
the shape of the trunk and adjusts the length of each seg-
ment to fit into the silhouette, while other properties, such as
the branching structure or the number of segments, remain
fixed. This operation is useful for generating multiple trees
that have the same structure, but different appearances.

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

Figure 12: The original tree (left) and a tree reproduced
by sketching the trunk (orange) and the overall shape
(blue)(right).

4. Algorithm

This section provides a detailed explanation of the al-
gorithms used to compute 3D tree geometries based on
sketches and examples. We focus on only the most relevant
aspects, omitting the explanation of relatively straightfor-
ward processes because of space limitations.

4.1. Creating a 3D Tree from a 2D Sketch

The task here is to compute the depth information for the
branches. The goal is to make the tree look similar when
viewed from all angles, preserving the appearance from the
original viewpoint. Our basic strategy is to adjust the ori-
entation of a branch so that the distances between it and
other branches are as large as possible (Figure 13). We
use a greedy approach (adding branches one by one) in-
stead of computing a globally optimal branch placement.
The order of processing sibling branches is random. Ide-
ally, we would construct a 3D volume whose voxels con-
tain the distance to the nearest branch and then place the
branch whose voxels have maximum distance values. Un-
fortunately, it is too computationally expensive to update the
volumetric distance field for each added branch. Therefore,
we project all branches to the ground and construct a 2D dis-
tance field, computing distances from the projected branches
to each pixel (Figure 13, bottom). Our current implementa-
tion, which uses a 128�128 distance field, makes an exhaus-
tive search for the optimal placement.

The projection of 3D branches onto the screen must fit
the 2D sketch. This means that if we extended a branch in
the direction almost perpendicular to the screen, the distance
field alone could not prevent branches from protruding ex-
cessively from the overall silhouette (the maximum distance
value is a branch of infinite length). To prevent this, we re-
strict the search to within a 3D hull constructed from a 2D
convex hull around the given sketch. To construct the 3D
hull, we simply sweep a circle along the 2D convex hull,
starting from the bottom and ending at the top, and enlarge it
by a constant value (

�
2) (Figure 14). Magnification is nec-

Figure 13: Computing the depth information for branches
with the 2D distance field.

essary in order to give the branches that touch the hull the
freedom to move away from the original plane.

(a) (b)

Figure 14: A 2D convex hull of the original sketch (a). The
resulting 3D convex hull after magnification (b).

Our algorithm also constrains the lengths of branches, be-
cause a branch is generally shorter than its parent branch.
We use the formula introduced in Weber and Penn [WP95]
to calculate the length of a child branch. To relax the con-
straint, we magnify the calculated value using a constant
(the current implementation uses 1.2). We use this constraint
over branches other than the trunk and its child branches.
Our algorithm further constrains the angles between a parent
branch and its child branches. We first calculate the maxi-
mum angle between a parent branch and its child branches
in the 2D sketch. Then, we compute a limit angle by multi-
plying the maximum angle times a constant (we use 1.2). Fi-
nally, we constrain the angles between the parent branch and
its children to be smaller than the limit angle. During this
process, for simplicity and efficiency we treat each branch
as a straight-line segment that connects the base and termi-
nal points. After constructing a 3D tree consisting of straight
branches, we assign depth modulation to the curves shown
in the original 2D sketch. For depth modulation, we adopt
the algorithm described in [IOOI05], which was proposed to

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

add appropriate depth to a user-drawn 2D stroke in an inflo-
rescence editor.

4.2. Extension of the Basic Algorithm

People tend to draw branches that extend sideways and omit
branches extending toward or away from the screen. How-
ever, our basic algorithm tries to spread branches in all di-
rections uniformly, and the resulting 3D tree looks very dif-
ferent when viewed from the side (Figure 15).

front 
view

side 
view

Figure 15: The resulting tree is strange when viewed from
the side.

To solve this problem, we assume that the user draws only
branches that extend sideways, and we make the system au-
tomatically add branches that extend toward and away from
the screen. We do this by constraining the direction of a
branch within specific angles relative to the viewing direc-
tion (we use angles between 45 and 135 degrees). The sys-
tem constructs two 3D trees using the algorithm described
above, rotates one of them 90 degrees around the vertical
vector, and merges it with the original tree, except for the
main trunk (Figure 16). The two trees are slightly different
because our algorithm spreads sibling branches in a random
order. This simple ad hoc trick works very well and is an in-
dispensable tool in the system. The merged tree looks similar
when viewed from both the front and the side (Figure 17).

basic 
algorithm

rotating
90 degrees

merging

basic 
algorithm

Figure 16: The system adds branches to the front and the
back. Snapshots, except for the first sketch, are seen from the
top.

4.3. Example-based Branch Multiplication

This operation adds a new branch to a given parent branch
using the existing child branches as examples. To add a

front 
view

side 
view

Figure 17: The merged tree looks similar when viewed from
both the front and the side.

branch, the system must determine its position, length, ori-
entation, and shape. Position, length, and shape are simple:
the system places the new branch between the most sepa-
rated pair of neighboring branches. The length of the branch
is the average of the neighboring sibling branches. As for the
shape, we randomly choose one of the sibling branches on
the parent branch and copy it.

Orientation is a bit more complicated. The system first as-
signs consistent local coordinate systems along the parent
branch using the "turtle" of L-systems [PHHM96]. The ori-
entation of a child branch is determined by two angles in
this local coordinate system: a "rotation angle" defined in
the plane perpendicular to the parent branch, and a "down
angle", which is the angle between the parent branch and the
child branch (Figure 18).

Parent branch
(head vector)

Up vector

Left vector

Child 
branch

Rotation angle

Down angle

Figure 18: A direction vector of a new child branch consist-
ing of a rotation angle and a down angle.

The rotation angle is calculated so that the new child
branch spreads uniformly when seen along the head vector.
Since a natural branch tends not to grow downward because
of tropisms, we mimic the effect by calculating the rotation
angle so that the child branch does not make an angle larger
than 120 degrees with the upward vector perpendicular to
the ground. A down angle is calculated as the average of the
down angles of the neighboring sibling branches, as is the
case with length.

4.4. Reproduce a Tree from Overall Sketching

The user-guided duplication algorithm is as follows:

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

� Generate a new trunk that follows the user-drawn trunk
stroke.

� The user-drawn silhouette stroke is converted into a 3D
convex hull, using the algorithm described in Section 4.1.

� The length of the first-generation branches is adjusted so
that they touch the 3D convex hull. The ratio is stored in
each first-generation branch.

� Modify the length of second-generation or younger
branches using the ratio stored in the ancestral first-
generation branch. If the resulting length is longer than
the 3D convex hull, adjust the length so that it touches the
hull.

Since first-generation branches tend to decide the overall
shape of a tree [WP95], they are processed differently from
subsequent-generation branches.

5. Results

Figure 1 and Figure 20 show 3D tree models designed by
the authors. In Figure 1, the young red tree consists of 7,900
nodes (branches and leaves), the zelkova consists of 30,000
nodes, and the maidenhair tree consists of 4,900 nodes. We
spent less than 10 minutes on average to design each of these
models. We created broadleaf trees mainly from a 2D sketch
and by propagating branches and leaves. The automatic mul-
tiplication was useful for designing branches of an acicular
tree.

We performed a user study to test the usability of our pro-
totype system. The subjects were seven students in the Com-
puter Science department who were novice users of our sys-
tem. After having them read a tutorial and learn how to use
our system, we asked them to create as many 3D trees as
they liked. Most subjects spent approximately 1 hour on the
study, while one subject was fascinated by the system and
spent a day playing with it. Figure 21 shows tree models
designed by four users and the time to complete each tree
model. Some of these model trees are not natural in appear-
ance, but they are what the users wanted. These unique trees
might be difficult to design using rule-based systems or by
modifying predefined tree models.

We also performed another informal study to compare our
system with existing methods. We used cpfg [PMKL01] as
an example of a text-based system and Xfrog as an exam-
ple of a graphical system. We recruited three novice users
to join the study and asked them to create 3D trees like the
target shown in Figure 22 (a). Figure 22 shows the resulting
tree models created using cpfg (b), Xfrog (c), and our system
(d and e). Two test users worked together for approximately
60 minutes to create the cpfg model. Another test user spent
30 minutes to create the Xfrog model. Finally, each test user
worked individually using our system and took 10 minutes
to create their models. These results show that our system
is good at reconstructing the major branching structures of a
tree, while the other systems are good at reconstructing de-

tailed structures. We would like to combine these two com-
plementary approaches in the future.

6. Limitations and Future Work

Our system allows the user to design various interesting tree-
like shapes quickly. This rapid construction is possible be-
cause we ignore some natural principles. As a result, the final
models sometimes exhibit artifacts not seen in conventional
tree-modeling systems. In the future, we plan to explore
methods to fill the gap between speedy systems and systems
that adhere to the processes of nature. For example, the cur-
rent implementation does not handle tropisms explicitly. We
plan to estimate tropisms from user-defined branches and ap-
ply them to system-created branches. We have designed our
prototype so that it uses linear workflow, except for undo or
redo. To make the system usable for practical applications, it
should be able to edit trees. In the future, we plan to develop
more sophisticated 3D interactions in our prototype system,
which would allow the user to move, rotate, or bend indi-
vidual or groups of branches on a completed tree without
destroying leaves.

Our user interfaces can be applied to 3D plants other than
trees by implementing some additional interfaces. For ex-
ample, we plan to implement sketch-based 3D interfaces for
generating more complex leaf and flower models. We also
plan to develop more leaf-arrangement engines, to handle
other leaf patterns.

The current system is designed to construct a single tree.
We are also interested in the construction of similar, but
slightly different, trees to create a forest, and are experiment-
ing with algorithms that generate slightly different trees by
tweaking the parameters used in the construction process.

(a) (b)(a) (b)

Figure 19: An example of reproduction of a tree. (a) an orig-
inal tree, (b) the reproduced version.

References

[AK84] AONO M., KUNII T. L.: Botanical tree im-
age generation. IEEE Computer Graphics and
Applications 4, 5 (1984), 10–34. 2

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

(a) (b) (c)

Figure 20: 3D trees designed by one of the authors. (a) Cherry, (b) Pine, (c) Oriental Plane.

(d) 7 min(b) 6 min(a) 6 min (c) 9 min

Figure 21: 3D tree models designed by the test users and the time to complete each tree model.

[BPF�03] BOUDON F., PRUSINKIEWICZ P., FEDERL

P., GODIN C., KARWOWSKI R.: Interactive
design of bonsai tree models. Comput. Graph.
Forum 22, 3 (2003), 591–600. 2, 5

[Cyp91] CYPHER A.: Eager: Programming repetitive
tasks by example. In Proceedings of CHI ’91
(New Orleans, LA, 1991), pp. 33–39. 1, 3

[Cyp93] CYPHER A.: Watch What I Do: Program-
ming by Demonstration. Cambridge, MA:
MIT Press, 1993. 3

[DL97] DEUSSEN O., LINTERMANN B.: A modelling
method and user interface for creating plants.
In Graphics Interface (May 1997), Davis W.,
Mantei M.„ Klassen V., (Eds.), pp. 189–197. 2

[DS00] DEUSSEN O., STROTHOTTE T.: Computer-
generated pen-and-ink illustration of trees.
In Proceedings of SIGGRAPH 2000 (2000),
ACM Press, pp. 13–18. 2

[EyHBE97] EGGLI L., YAO HSU C., BRÜDERLIN B. D.,
ELBER G.: Inferring 3d models from freehand
sketches and constraints. Computer-Aided De-
sign 29, 2 (1997), 101–112. 3

[IH01] IGARASHI T., HUGHES J. F.: A suggestive
interface for 3d drawing. In Proceedings of
UIST 2001 (2001), ACM Press, pp. 173–181.
3, 4

[IKTM98] IGARASHI T., KAWACHIYA S., TANAKA H.,
MATSUOKA S.: Pegasus: a drawing system
for rapid geometric design. In Proceedings of
CHI ’98 (1998), ACM Press, pp. 24–25. 3

[IMKT97] IGARASHI T., MATSUOKA S., KAWACHIYA

S., TANAKA H.: Interactive beautification:
a technique for rapid geometric design. In
Proceedings of UIST ’97 (1997), ACM Press,
pp. 105–114. 3

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: a sketching interface for 3d freeform
design. In Proceedings of SIGGRAPH ’99
(1999), ACM Press, pp. 409–416. 1, 3

[IOOI05] IJIRI T., OWADA S., OKABE M., IGARASHI

T.: Floral diagrams and inflorescences: Inter-
active flower modeling using botanical struc-
tural constraints. In Proceedings of SIG-
GRAPH 2005 (2005), ACM Press. 2, 6

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

(a) target (b) cpfg (c) XFrog (d) our system (e) our system

Figure 22: 3D tree models designed using the different systems by the test users. (a) The target tree, (b) the result of cpfg by
two users, (c) the result of XFrog and (d, e) the results of our system.

[LD99] LINTERMANN B., DEUSSEN O.: Interactive
modeling of plants. IEEE Comput. Graph.
Appl. 19, 1 (1999), 56–65. 2

[Lin68] LINDENMAYER A.: Mathematical models for
cellular interactions in development. Journal
of Theoretical Biology 18 (1968), 280–315. 2

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models
of plants interacting with their environment. In
Proceedings of SIGGRAPH ’96 (1996), ACM
Press, pp. 397–410. 2

[MT02] MAIERHOFER S., TOBLER R. F.: Creation of
realistic plants using semi-automatic paramet-
ric extraction from photographs. Technical re-
port 2002-002, VRVis Research Center (2002).
2

[MWK89] MAULSBY D. L., WITTEN I. H., KITTLITZ

K. A.: Metamouse: specifying graphical pro-
cedures by example. In Proceedings of SIG-
GRAPH ’89 (1989), ACM Press, pp. 127–136.
1, 3

[ONOI04] OWADA S., NIELSEN F., OKABE M.,
IGARASHI T.: Volumetric illustration: design-
ing 3d models with internal textures. ACM
Trans. Graph. 23, 3 (2004), 322–328. 3

[PHHM96] PRUSINKIEWICZ P., HAMMEL M., HANAN

J., MĚCH R.: L-systems: from the theory
to visual models of plants. Proceedings of
the 2nd CSIRO Symposium on Computational
Challenges in Life Sciences. (1996). 2, 7

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.:
Synthetic topiary. In Proceedings of SIG-
GRAPH ’94 (1994), ACM Press, pp. 351–358.
2, 5

[PK89] PENTLAND A., KUO J.: The artist at the in-

terface. Vision Science Technical Report 114.
(1989). 3

[PMKL01] PRUSINKIEWICZ P., MÜNDERMANN L.,
KARWOWSKI R., LANE B.: The use of po-
sitional information in the modeling of plants.
In Proceedings of SIGGRAPH 2001 (2001),
ACM Press, pp. 289–300. 2, 5, 8

[RMMD04] RECHE-MARTINEZ A., MARTIN I., DRET-
TAKIS G.: Volumetric reconstruction and in-
teractive rendering of trees from photographs.
ACM Trans. Graph. 23, 3 (2004), 720–727. 2

[SL96a] SHPITALNI M., LIPSON H.: Identification of
faces in a 2d line drawing projection of a wire-
frame object. IEEE Trans. Pattern Anal. Mach.
Intell. 18, 10 (1996), 1000–1012. 3

[SL96b] SHPITALNI M., LIPSON H.: Optimization-
based reconstruction of a 3d object from a sin-
gle freehand line drawing. Computer-Aided
Design 28, 8 (1996), 651–663. 3

[SO99] SAKAGUCHI T., OHYA J.: Modeling and an-
imation of botanical trees for interactive vir-
tual environments. In Proceedings of VRST
’99 (1999), ACM Press, pp. 139–146. 2

[SRDT01] SHLYAKHTER I., ROZENOER M., DORSEY

J., TELLER S.: Reconstructing 3d tree models
from instrumented photographs. IEEE Com-
put. Graph. Appl. 21, 3 (2001), 53–61. 2

[TNT89] TANAKA T., NAITO S., TAKAHASHI T.: Gen-
eralized symmetry and its application to 3d
shape generation. The Visual Computer 5, 1&2
(1989), 83–94. 3

[WP95] WEBER J., PENN J.: Creation and render-
ing of realistic trees. In Proceedings of SIG-
GRAPH ’95 (1995), ACM Press, pp. 119–128.
2, 5, 6, 8

c� The Eurographics Association and Blackwell Publishing 2005.



M. Okabe, S. Owada & T. Igarashi / Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES

J. F.: Sketch: an interface for sketching 3d
scenes. In Proceedings of SIGGRAPH ’96
(1996), ACM Press, pp. 163–170. 1, 3

c� The Eurographics Association and Blackwell Publishing 2005.


