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Abstract. In our research group, we investigate techniques for retriev-
ing videos based on user-specified appearances. In this paper, we intro-
duce two of our research activities.

First, we present a user interface for quickly and easily retrieving scenes
of a desired appearance from videos. Given an input image, our system
allows the user to sketch a transformation of an object inside the im-
age, and then retrieves scenes showing this object in the user-specified
transformed pose. Our method employs two steps to retrieve the tar-
get scenes. We first apply a standard image-retrieval technique based
on feature matching, and find scenes in which the same object appears
in a similar pose. Then we find the target scene by automatically for-
warding or rewinding the video, starting from the frame selected in the
previous step. When the user-specified transformation is matched, we
stop forwarding or rewinding, and thus the target scene is retrieved. We
demonstrate that our method successfully retrieves scenes of a racing
car, a running horse, and a flying airplane with user-specified poses and
motions.

Secondly, we present a method for synthesizing fluid animation from
a single image, using a fluid video database. The user inputs a target
painting or photograph of a fluid scene. Employing the database of fluid
video examples, the core algorithm of our technique then automatically
retrieves and assigns appropriate fluid videos for each part of the tar-
get image. The procedure can thus be used to handle various paintings
and photographs of rivers, waterfalls, fire, and smoke, and the resulting
animations demonstrate that it is more powerful and efficient than our
prior work.

1 Video Retrieval by User-Specified Transformation

Because the number of accessible videos is growing larger by the day (especially
on the Internet), many people are interested in ways to quickly and easily find
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Fig.1. (a) The current video frame and the user-drawn green arrows specifying the
transformation: the tip of the fighter aircraft moves toward the right and the tail comes
from the left. (b-d) The scenes retrieved from the video collection by our method, with
the aircraft flying from left to right.

certain scenes in these videos. Therefore, video retrieval has become an active
research area for computer vision and multimedia specialists.

Most video search engines, such as YouTube ! and gettyimages 2, currently
support only text input in queries, and video searches are based on verbal infor-
mation manually assigned to each video (e.g., the title of a video or tags). These
engines do not understand queries pertaining to a desired pose or motion of a
video object. If we input a text query such as “I want to watch a fighter aircraft
flying from left to right,” none of the existing video search engines can retrieve
scenes such as those shown in Fig. 1-b, ¢, or d. Furthermore, even if we were to
develop a smart video search engine capable of understanding such text queries,
it would be difficult or tedious for human users to precisely describe a desired
pose or motion with mere words.

To address this problem, we are interested in an appearance-based user inter-
face that enables the interactive exploration of video collections. Google Video
and its extensions propose image-based image or video retrieval [1,2] by repre-
senting each video frame as a relatively low-dimensional vector, using bag-of-
features. Photo tourism and related methods allow the user to interactively ex-
plore photo and video collections by walking through a three-dimensional (3D)
scene reconstructed from the collections [3-6]. These are based on precise 3D
reconstruction of the scene and camera positions via the incremental structure-
from-motion method. However, the technique is typically applied only to station-
ary objects such as buildings, is difficult to apply to moving, deformable objects,
and is computationally expensive. Direct object manipulation also allows inter-
active navigation of scenes in a single video. [7-11]. The user navigates a video
by dragging a video object and interactively editing its posture. Because these
techniques are based on two-dimensional (2D) video processing rather than 3D
reconstruction, their computational cost is relatively low. However, we want to
perform this type of video object navigation not only in a single video, but also
in video collections.

! http://www.youtube.com
2 http:/ /www.gettyimages.com



We propose an appearance-based interface that allows the user to quickly
and easily specify the desired pose and motion of a video object. The user first
specifies the input image by simply pausing a video or preparing some other
image. Then the user specifies a transformation of an object inside the image by
drawing arrows, using our sketching interface (Fig. 1). After several seconds, our
system displays the candidate scenes retrieved from the video database. In these
scenes, the object from the input image is transformed (i.e., rotated, scaled, or
translated) in the 3D world according to the user’s specifications. Nevertheless,
all user input into our system is 2D, which allows the user to design a query
intuitively. Our algorithm also relies only on 2D image- and video-processing
technologies (i.e., does not reconstruct any 3D information), which keeps the
computational cost low. We demonstrate that our method can be successfully
applied to different types of video objects, including a racing car, a running
horse, and a flying airplane. We also carry out a subjective evaluation of the
usability of our system.

1.1 Our Approach

Let’s assume that we are now watching the scene of Fig. 2-a, where a red racing
car is running from left to right. At the same time, we feel like watching another
scene like Fig. 2-b, where a similar car is running toward the front. To find such
a desired scene, we usually manipulate the video player many times, e.g., by
pushing the forward and rewind buttons or moving the play bar: if we cannot
find the desired scene in the currently watching video, we have to go to a video
search engine like YouTube or gettyimages to further search for it. However,
these are tedious tasks.
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Fig. 2. Our motivation.

To support this user to find the desired scene, we propose a user interaction
for video retrieval. Using our sketching interface, the user specifies the transfor-
mation of the object, i.e., the red car in this case, and then the system auto-
matically retrieves the candidates of the user-desired scene. Fig. 3-a shows the
exmaple. The user draws the two green arrows, which specify where the front



and back spoilers should come in the desired scene. Fig. 3-b is the result that our
system actually retrieved from the database: we overlap the same arrows over
the image, which show each spoiler has come at the corresponding tip of each
arrow.

(a.) Specifying desired d®formation (b) The retrieved scene

Fig. 3. The proposed user interaction.

1.2 Algorithm

It is difficult for any existing image or video retrieval technique to directly re-
trieve the desired scene (Fig. 2-b) using the currently watching scene (Fig. 2-a)
as the query. For example, using the simple method of feature matching, we
extract SIFT (Scale-Invariant Feature Transform) features [12] in both the cur-
rently watching frame and every frame of the videos in the database, and com-
pute the matching between them. Fig. 4 shows the results. In Fig. 4-left, the top
and bottom frames are similar looking scenes: the red car is left-side-right but
the posture of the car is almost the same. As a result, we successfully find many
consistent matches between them as the many yellow lines, and the computer
can retrieve the bottom frame as the result. On the other hand, there is no con-
sistent match in the right case: the red car is the same, but since the bottom car
is the rotated version of the top car. SIFT describes only 2D image feature and
does not capture this 3D rotation.

However, it is interesting to note that the bottom two frames in Fig. 4 exist
in the same video sequence as shown in Fig. 5. This fact lets the computer find
the user-desired frame (Fig. 4-bottom right): the computer can find the frame of
Fig. 5-d, and then find the desired scene by rewinding the video from the frame
until Fig. 5-a is found. During the rewinding process, we track the front and back
spoilers, since they are specified by the user as tails of the arrows. We stop to
rewind the video, when each tracker comes near to the tip of the corresponding
arrow. Then, we reach the desired scene.

In conclusion, our algorithm employs two steps (Fig. 6): we first find a frame
that looks similar to the query frame, using SIFT matching, and then we auto-
matically forward or rewind the video from that frame to find the user-desired



Fig. 4. Video retrieval using SIFT matching. Left: We find many consistent matches.
Right: We cannot find any consistent match.

scene. SIFT matching is efficiently performed using a kd-tree algorithm. To effi-
ciently find the desired scene by forwarding or rewinding the video, we use the
particle video algorithm [13] for motion tracking. As shown in the right part of
Fig. 6, we distribute the particles throughout the image space and track their
underlying motion. The red particles represent those newly added in the given
frame, while the blue particles are continuing from the previous frame. In the
pre-processing stage of the database construction, all the particles and their
trajectories are computed and saved. In the forwarding or rewinding process,
the system selects the particles around the starting points of the user-drawn
arrows in the frames found in the SIFT matching step. During the forwarding

Fig. 5. (a) The red car is coming toward the front (Fig. 4-bottom-right), and then (d)
turning to the left (Fig. 4-bottom-left).



or rewinding process, the system always checks whether or not their trajectories
pass through the tips of the arrows at the same time. If so, the frame corre-
sponding to that time is output as the retrieved scene.

SIFT
matching

Fig. 6. A summary of our algorithm.

1.3 Results and Discussion

We tested our method on three types of video collections obtained from YouTube:
videos of racing cars, running horses, and flying airplanes. All videos had a res-
olution of 320 x 240. After downloading videos from each category, we created
a video database a priori. We computed the SIFT features for every frame of
each video. We also performed motion tracking using the particle video algo-
rithm [13], and saved all particle trajectories in the database. All experiments
were performed using a desktop PC with an Intel i7-860 2.8 GHz processor and
4.0 GB of memory.

Fig. 1 and Fig. 7 show the set of input images, the arrows drawn by the user,
and the results of our video retrieval. Detailed statistics from our experiments
are listed in Table 1. Given the user input, our system expends an average of
about 4 seconds on the retrieval process.

‘ Video Type H # of Frames ‘ Time for Retrieval (seconds) ‘
Car 3718 4.43
Horse 4450 3.10
Aircraft 3741 4.04

Table 1. The statistics of our experiments. The number of video frames and the average
time spent for the video retrieval are shown.

The first and second rows of Fig. 7 show the retrieval of the racing car videos.
In the first row, the user draws two arrows in an attempt to find scenes of a car
moving from right to left. One arrow specifies that the back spoiler moves from
the right, and the other specifies that the tip of the car moves toward the left.



The three columns of results show the best, second best, and third best retrieved
scenes. All of them show the car traveling toward the left, which matches the
user’s specification. In the second row, the user again draws two arrows on the
front and back spoilers, to find scenes of the scaled-down car moving forward.
In these results, the car has virtually the same pose in each result, but the scale
varies from one result to the next. This is caused by inaccuracies in the motion
tracking of the particle video algorithm; each particle often slides over the video
object, especially parts moving at high speeds.

Fig. 1 shows the results for the flying airplane, and indicates one limitation
of our technique. The user draws two arrows in an attempt to find scenes of a an
airplane flying from left to right. In all of the retrieved results, the user’s specifi-
cation has been achieved. However, in the second best candidate, the airplane is
also rotated about its medial axis. Even if the user does not desire such rotation,
it is often difficult to eliminate it using our system.

Fig. 7. Retrieval results.

User Study We carried out a user study to investigate the usability of our
system. The subjects were nine students from the computer science department,
accustomed to watching videos on the Web, but unfamiliar with our systems. We
asked each of them to retrieve a desired scene using our system. We showed the
car and horse images to each subject (the input images of Fig. 7), and asked the
subject to envision a scene and describe it in words. Then the subject drew the
arrows on the image, and the system retrieved the three best candidate scenes.
The subject watched all of the retrieved scenes, and then compared them to



what he/she had in mind. All subjects tried the car scene, and six of them also
tried the horse scene. We asked each subject to repeat the retrieval five times,
and counted the number of cases in which the subject found the desired scene.

The score for the car scene was 3.00 + 0.70 and the score for the horse
scene was 3.00 = 1.41. We only showed the subjects the input images of the
car and the horse, and none of them had any prior knowledge of what kinds of
scenes were included in the video database. As a result, subjects often specified
impossible transformations of the object, and could not find the desired scene.
For example, one subject wanted the car moving from the bottom to the top of
the image space, but there was no aerial view of the car in our video database.
The subjects frequently commented on the difficulty of finding a number of types
of scenes (e.g., a scene in which the car is running backward, showing its rear). It
is actually difficult to find such a scene via a single interaction, because the rear
of the car is invisible in the input image of Fig. 7, and it is impossible to specify
an arrow on the rear. However, it is interesting to note that our method does
allow the user to find a scene of the rear of the car by repeating the sketching
and retrieval operations, rotating the car step-by-step.

2 Creating a Fluid Animation from a Single Image
based on Video Retrieval

Creating quality fluid animations is time consuming for computer graphics de-
signers. There are two major methods. In one, physics-based simulation, it is
difficult to set the appropriate physical parameters to achieve the desired appear-
ance. The other, making a composite from a video recording of fluids, requires
the time-consuming tasks of finding an appropriate video, cutting and pasting
the segments accurately, and adjusting the appearance of the composite. We are
interested in animating a picture of a fluid to quickly and easily achieve the
desired appearance.

A previous study successfully designed fluid animations from pictures, but
it was limited to synthesizing relatively calm fluid motions such as water sur-
faces [14]; our study focuses on synthesizing more dynamic motions such as
water splashes. Another method allows users to specify a video example and
then transfers its fluid features to the target image [15]; however, only a single
video example is used, which limits the available variation in fluid features.

To address these problems, we developed a data-driven method for creating
a fluid animation from a picture (Fig. 8). The user inputs a target image (Fig. 8-
b) with a few hints about fluid motion (i.e., flow direction and speed) such as
sketches of flow direction, shown as orange arrows. The user also specifies an
alpha matte that extracts the fluid region of interest (Fig. 8-c). We constructed
a video database that includes hundreds of video examples of fluids (Fig. 8-a)
and helps the user synthesize better quality animation with less effort than in
previous methods (Fig. 8-d). The technical detail is described in our paper [16].
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Fig. 8. Creation of a fluid animation from a picture.

2.1 Our Method

Our system consists of three components: 1) construction of a video database of
fluids (Fig. 9-a), where each video example is cut into small pieces; 2) a best-
match search for an appropriate video example piece and assignment of this to
part of the target image; and 3) synthesis of the final animation through seamless
integration of the assigned pieces and adjustment of the overall appearance.
The offline process of database construction begins with gathering original
video examples of fluids (Fig. 9-b). To increase the number of examples, we cut
each video example into small pieces (Fig. 9-¢). For each video example piece,
we then compute the average image by averaging the frames (Fig. 9-e) to obtain
representative information about its appearance. We also calculate the differ-
ences between the average image and frames (Fig. 9-f) that have no significant
color properties but that capture high-frequency fluid features. Finally, from the
averaged images in the database, we construct a bag-of-features codebook and
describe each average image using a histogram of visual words (Fig. 9-d).
Hence, we cut a target image (Fig. 9-g) into small pieces using the same pro-
cess used for database construction (Fig. 9-i). Next, we compute the histogram
of visual words for each piece (Fig. 9-h), perform a best-match search between
histograms of visual words (see Figs. 9-d and h), and assign video example pieces
that are similar to the target-image piece. When a user-specified motion field is
given, it is used as a constraint for solving the assignment problem. Based on
the assignment results, differences (Fig. 9-f) are copied onto the corresponding
target-image piece (Fig. 9-j). Finally, all assigned differences are integrated seam-
lessly, and the animation is synthesized by adjusting the appearance (Fig. 9-k).

2.2 Results

We constructed an independent database for water, fire, and smoke scenes. This
involved gathering 151, 96, and 89 video examples for the water, fire, and smoke
databases, respectively, from which we obtained 246, 227, and 195 thousand
video example pieces. We synthesized the fluid animation for each target image,
as shown in the supplementary video. We designed an alpha matte and specified
an orientation map for each target image. We specified a speed map only for the
waterfall painting, the fire painting, and the smoke painting.

A side-by-side comparison shows that our method was better at reproducing
the fluid features of original video examples than the previous method. In partic-
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Fig. 9. System overview.

ular; the dynamic water splashes of the video examle were not well reproduced
in the previous method; it looks as if irrelevant synthesized noises flow along a
static motion field. On the other hand, our method successfully reproduces the
fluid features of assigned video example pieces. Our method also made it easier
for users to create a fluid animation. For example, using the previous method,
the waterfall painting had to be divided into the waterfall and river parts; in
contrast, our method could process the whole image at once.

We also performed a user study in which 16 participants ranked the visual
quality of each animation. All of the water scenes were given high scores, but
fire and smoke scenes scored lower. The smoke in the train scene was difficult to
animate because the motion of smoke became chaotic due to a failure in video
assignment, and the lower smoke in the scene had visible artifacts of noise caused
by video compression that were hidden in the original videos.

3 Conclusion

We have developed the appearance-based user interfaces for video retrieval and
the application of the video retrieval technique to animation synthesis. In our
approaches, we start with a single image as the input, and then introduce the
additional user’s suggestions. In the first study, it was the user-specified defor-
mation. In the second study, it was the user-specified motion field of the fluid
flow. In both studies, we relied on the sketch-based user interface, i.e., drawing
the arrows. We adopted it because we thought it was intuitive for the user. We
have demonstrated that the combination of content-based image and video re-
trieval technique with a few additional suggestions enabled us to propose a novel
interaction for video retrieval and animation synthesis.
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