直交視点画像を用いた3次元流体モデリング

Modeling Fluids from Ortho-view Images by Appearance Transfer

岡部 誠¹ 土橋 宜典² 山口 尊嗣³ 安生 健一⁴ 尾内 理紀夫⁵

Makoto Okabe¹ Yoshinori Dobashi² Takatsugu Yamaguchi³ Ken Anjyo⁴ Rikio Onai⁵

- 1,3,5 電気通信大学
- 2 北海道大学

1,3,5 The University of Electro-Communications

2 Hokkaido University

4 オー・エル・エム・デジタル / 科学技術振興機構 CREST

REST 4 OLM Digital, Inc. / JST CREST

E-mail: 1 m.o@acm.org 2 doba@ime.ist.hokudai.ac.jp 3 yamaguchi@onailab.com 4 anjyo@olm.co.jp 5 onai@cs.uec.ac.jp

図 1: 左端と右端は実際の炎を正面と真横から撮影した画像である.上段はこれらの画像から既存手法で作ったボリューム.回転して別の視点から見ると不自然にボケて見える.下段は提案手法で作ったボリューム.別の視点から見た時の見た目が保たれるようにボリュームを作るので、どこから見ても入力画像の見た目に近いボリュームが出来る.

1. はじめに

炎,煙,爆発など,流体の視覚効果は映像製作に欠か せない.実際,コンピュータ・グラフィクスの研究分 野では,流体は常に最も重要な課題の1つとして捉え られてきた.映像製作の現場では,流体のシーンは大 きく2つの方法で作られている.1つは流体シミュレ ーションによる方法[1],もう1つは流体を撮影した動 画を合成する方法である.本論文は後者の問題を扱う.

多くの映像製作会社は独自の動画データベースを持っ ている.ポストプロダクションを行うアーティストは、 データベースから適切な流体動画を選び、動画編集ツ ールでシーンに重ね合わせる.しかし、動画は2次元 なので、カメラが動くシーンや立体映像の製作など、3 次元的な効果が必要な場合には対応できない.また多 くの流体は半透明なので、自然に合成するために複雑 なマットが必要な場合は大変時間の掛かる作業となる.

2 次元流体動画の欠点を補うため、ユーザが少ない労力で3次元流体を作ることのできるイメージ・ベース

な手法を提案する.提案手法の入力は2枚の直交視点 画像のみである(図1左端と右端).そのため,流体撮 影時のスタジオ・セットアップが簡単である.既存の イメージ・ベースの手法では,多くのカメラを流体の 周囲に配置する必要があった[2,3,5]が,提案手法では 2つのカメラがだいたい直角になるように配置できれ ば良く,カメラ・キャリブレーションも不要である. 動画が与えられた後は,提案手法が自動的に3次元ボ リュームを作る.

入力画像が2枚なので、既存のイメージ・ベースの手 法を使うには、3次元ボリュームの構築に必要な情報 が不足している.実際、図1上段に示すのは、Ihrke らの手法を適用して作ったボリュームだが、回転して 別の視点から見ると不自然にボケて見える.我々が何 故これをボケていると感じるか、と考えると、我々は 2つの入力画像(図1左端と右端)の見た目を既に知っ ていて、それらと比較するのでボケていると感じるの ではないか、というのが我々の仮説である.提案手法 はこの仮説に基づいている.2 枚の直交視点画像のような見た目になるように,別の視点から見た時の画像 を修正する.修正された画像を用いて3次元ボリュー ムを更新する.この修正と更新を繰り返すと,ボリュ ームはより良い見た目を持つものに収束していく.図 1下段にその結果を示す.

今回の提案は、画像から3次元ボリュームを正しく再 構築するための手法ではなく、あくまで3次元ボリュ ーム・モデリングの手法である.2枚の画像のみから、 そこに写る3次元ボリュームを正確に再構築するのは 非常に難しい問題である.一方で、我々は2枚の画像 のみからでも、映像製作に使えそうな質の3次元ボリ ュームが作れることを示す.従って、入力画像は再現 すべき目標ではなく、あくまでモデリングのための参 照画像という位置付けである.

2. 既存研究

既存の computed tomography 技術(CT)は,多視点で撮影された X 線画像が与えられれば,そこに写る 3 次元 半透明物体を再構築できるという,Radon の投影理論 に基づいている[7]. だが,そのような CT スキャナを 炎や煙の撮影に用いるのは難しいため, 画像ベースの tomography 技術が提案されてきた.

Ihrke らは多視点で撮影した炎や煙の画像から最小二 乗法による最適化を用い、3 次元ボリュームを作る手 法を提案した[5]. Hasinoff らは炎の画像生成モデルと flame sheet という炎の表現法を提案し、更に flame sheet の線形和で複雑な炎を表現する手法を提案した [3]. Gregson らは統計的最適化に基づく CT を提案し た[2]. 統計的手法を用いることで見た目に関する正規 化項など、高レベルで複雑な制約をエネルギー関数に 含めることが可能となった. これらの手法は高品質な 流体の3次元ボリュームを作ることができるが、密に 撮影された多視点画像が必要であり、非専門家が簡単 に扱える手法ではない.

3. 提案手法

2 枚の直交視点画像(図 2-a)が与えられると, Ihrke らの 手法(LSM=最小二乗法)を用いて初期ボリュームを作 る(図 2-b). このボリュームは図 1 上段のように別の視 点から見ると不自然にボケていたり,図 2-b のように 斜め上から見下ろすと不自然なグリッドが見える.

図 2: 提案手法の処理の流れ.

提案手法は次の3ステップを繰り返す.1) 現在のボリ ュームを多視点方向へ投影してレンダリングする(図 2-c).2) テクスチャ合成手法を用い,各投影画像を入 力画像と似たような見た目になるよう修正する(図 2-d).3) 修正した画像にフィルタ補正逆投影法を適用 し,3次元ボリュームを構築する(図 2-e).3ステップ 終了後,再びステップ1へ戻り(図 2 の赤い矢印),構 築されたボリュームは多視点方向へ投影される.

以下,入力画像はグレースケールとし,流体の密度を 表す3次元ボリューム(同じくグレースケール)を構築 する手法を述べる.初期ボリュームは3.1章,3ステ ップは3.2章から3.4章で述べる.以上を基本アルゴ リズムとし,それを3.5章で多重解像度に拡張する.

3.1. 初期ボリューム

(a) Input images

(b) Initial 3D volume

図 3: 煙の CG 画像から求めた初期ボリューム.

Ihrke らの最小二乗法に基づく方法を用い,2枚の直交 視点画像から初期ボリュームを作る.求めたいボリュ ームを Ray Casting 法によって正面及び真横方向に投 影したものが入力画像だと仮定すると,O = BV,が成 り立つ.Oは入力画像のピクセル集合,Bは Ray Casting 法の処理に相当する行列,Vは求めたいボリュームで ある. $O \ge B$ が与えられているので,Vは擬似逆行列を 用いて, $V = (B^T B)^{-1} B^T O$, と書ける.共役勾配法を用 いて計算すればVが求まる.

図 3-a は煙のシミュレーションデータをレンダリング して作った直交視点画像,図 3-b はそれらに Ihrke ら の手法を適用して作った初期ボリュームである.正面 (0 度)及び真横(90 度)から見ると入力画像に似ている が,斜め 45 度から見ると不自然にボケている.また, 斜め上から見下ろすとグリッド模様が見える.

3.2. 多視点で投影

ステップ1では,現在の3次元ボリュームを正射影で 多視点に投影した画像を作る.この投影には Ray Casting 法を用いる.投影方向は[0,π)の範囲で,角度の 間隔は1度,従って180枚の投影画像を作ることとな る.図4は図3の初期ボリュームを15度,45度,75 度で投影した画像である.

図 4: 初期ボリューム(図 3)の投影画像.

3.3. 見た目の復元

ステップ2では、入力画像に似た見た目を持つように 投影画像を修正する.画像のピラミッドとヒストグラ ム・マッチングを用いた Heeger らのテクスチャ合成法 を使う[4].本手法では steerable pyramid を用い、画像 を4スケール、4方向の帯域に分解する(図5).投影画 像を修正するには、入力画像と投影画像を共に steerable pyramid で分解し、対応する帯域間で、投影 画像の帯域が入力画像の帯域と同じヒストグラムを持 つようにヒストグラム・マッチングを行う.修正され た steerable pyramid から画像を復元すると、入力画像 に似た見た目の投影画像が得られる、というのが Heeger らの手法である.

図 5:4 スケール, 4 方向成分を持つ steerable pyramid.

入力画像は正面と真横の2つなので、そのどちらかの 帯域のヒストグラムを使うのではなく、両者のヒスト グラムを線形補間してマッチングに使う.図 6-a と c は正面(0度)と真横(90度)の入力画像の帯域である.図 6-d と f はそれらのヒストグラムである.それぞれ b⁰、b⁹⁰とする.今、x度での投影画像を修正したいと すると、目的のヒストグラムb^xの各ビンを次の式で線 形補間して求める(図 6-e):

$$b^{x}(i) = \frac{90 - x}{90}b^{0}(i) + \frac{x}{90}b^{90}(i).$$

ここで*i*はヒストグラムのビンのインデックスである. *x*度での帯域のヒストグラムが, *b*^xに等しくなるように 帯域を修正する(図 6-b).

図7は図4の投影画像それぞれにつき,見た目を復元 した画像である.入力画像に近く,はっきりした見た 目となっている.

シミュレーションで作成した炎のボリュームから 180 枚の投影画像を作り,それらの帯域のヒストグラムが [0,π)の範囲でどのように変化するか観察した.ヒスト グラムの大まかな形状はスムーズに変化した. ー方, その変化は必ずしも線形ではなかった.今回,線形補 間を採用したのは,実装が簡単でスムーズな補間が実 現できるからだが,線形補間よりも優れた補間方法が 存在する可能性はあり,調査は将来の研究課題である.

図 6: ヒストグラムの線形補間とマッチング.

図 7: 投影画像(図 4)の見た目を復元した結果.

3.4. フィルタ補正逆投影法の適用

ステップ3では、フィルタ補正逆投影法を適用して修 正した投影画像(図7)から3次元ボリュームを再構築 する. ラドンの定理から導かれるフィルタ補正逆投影 法を使えば、投影画像にフィルタを掛けた画像を加算 処理することで、他の手法[2,3,5]と比べて高速にボク セル値を決定することができる[7]: 画像電子学会 The Institute of Image Electronics Engineers of Japan

$$V(x, y, z) = \sum_{\theta=0}^{179} I^{\theta}(x\cos\theta + y\sin\theta, z) * FT^{-1}(|f|)$$

 I^{θ} は角度 θ での投影画像、*は畳み込み演算、 FT^{-1} は逆 フーリエ変換、fは周波数を表している.

3.5. 多重解像度への拡張

2次元及び3次元テクスチャ合成の既存手法では、低 解像度なものから高解像度なものへ順次合成処理を繰 り返すような多重解像度を用いたアルゴリズムが、高 画質なテクスチャ画像を合成できることが知られてい る[6]. 我々も3.1章から3.4章で述べた基本アルゴリ ズムを多重解像度に拡張する.入力画像の低解像度版 を作り、低解像度なボリュームを基本アルゴリズムで 合成する.次に入力画像及びボリュームの解像度を現 在の2倍にし、再び基本アルゴリズムを適用する.こ の処理を最大解像度まで繰り返す.この過程は付録の ビデオで示した.

図8に多重解像度アプローチの利点を示す.図8-aは入力画像である.図8-bと図8-cは多重解像度アプローチを用いた場合と用いない場合の結果を示す.単一解像度で作ったボリュームは尖がっていてノイズが見える.3段階の多重解像度アプローチを用いた方は滑らかで丸い形で作られている.

(a) input inages

図 8: 多重解像度アプローチの効果

4. 結果と考察

提案手法を CG で合成した入力画像と実際に撮影した 入力画像の両方に適用した.付録のビデオに3次元ボ リュームのアニメーションを示す.

図1の炎は、紙を燃やした際の炎をソニー・ハンディ カム2台で撮影している.カメラ・キャリブレーショ ンは行わず、代わりに動画処理ソフトウェアで2つの 動画のタイミング、位置、サイズを手動で合わせた. 動画を与えると、提案手法は全自動で炎の3次元ボリ ュームを合成した.既存手法では視点を変えた時に見 た目がボケたり、付録のビデオに示すように斜め上か ら見るとグリッドが見えるが、提案手法はどこから見 ても丸い炎の形を作ることに成功している.一方,図 1 下段の画像を入力画像と比較すると、まだ鮮明さが 足りず、また入力画像にない模様も見えるので、入力 画像の炎が正確に再構築できた訳ではない.しかし、 合成された3次元ボリューム自体の質を評価するなら、 ある程度の実用にも耐えられる3次元の炎ができてい ると考えられる.

図9は図3左の入力画像から得られた結果である.図 3右と比較すると、入力画像のモコモコした煙の雰囲 気が得られていると共に、グリッドも消えている.

図 10 の炎も,シミュレーションで得たボリュームデー タを正面及び真横からレンダリングして 2 枚の入力画 像を作り,提案手法でボリュームを作ったものである. 図 10-eと図 10-f(及び付録のビデオ)で45度の角度から の見た目を正解のボリュームデータの見た目と比較し ている.提案手法の結果はやや鮮明さに欠け,正解デ ータを正確に復元できている訳ではないが,炎のテク スチャや全体的な雰囲気が再現できている.

2 枚の入力画像の両方に同じ画像を使えば、単一画像のみからでもある程度の3次元ボリュームを作ることができる.図11は単一の煙の動画から作成したボリュームのアニメーションである.付録のビデオに示すように、単一画像から作ったボリュームはある視点から見ると左右対称になる.図11の各フレームの左側は入力画像、右側は光の1回散乱を考慮したボリューム・レンダリングの結果である(視点は入力画像と異なる).

図 12 は爆発の単一画像から作成したボリュームのア ニメーションである.爆発の丸い形やテクスチャが 3 次元的に再現できている.付録のビデオでは入力画像 の片方に骸骨の画像を重ね合わせて,骸骨の顔を持つ 爆発ボリュームを作った例も載せている.

図 9: 図 3 の初期ボリュームから作った結果.

構造を保持できないという限界 提案手法を用いて 2 枚の樹木の直交視点画像から 3 次元の樹木を作る実験 を行った.炎や煙と同じ画像生成モデルが樹木に対し ても適用できる事が既存研究で提案されており,それ を用いたものである[8].しかし,提案手法は樹木の枝 構造を作ることに失敗した.図 13 に結果のボリュー ムを示すが,付録の動画にも示すように,樹木の正面 (もしくは側面)から少しでも視点をずらすと,図 13 の赤い楕円の中の幹が消滅してしまう.これは,今回

画像電子学会 The Institute of Image Electronics Engineers of Japan

用いたテクスチャ合成手法[4]が樹木の枝など、長いス トロークのような構造を表現する事に向いていないた めに起こる現象であり、幹はボリューム内部に散らば っているためである.この問題を解決するために、将 来、別のテクスチャ合成手法を調査し、適用の可能性 を探りたい.例えば、Portilla らの手法は統計的なテク スチャ合成手法でありつつ、画像の構造をより良く表 現できる手法を提案している[9].

解像度と計算時間 図3及び図9の煙の例は,入力画 像の解像度は188×150,従って生成されるボリューム のサイズは188×188×150となる.このような比較的 小さな解像度のボリュームを作る場合でも提案手法は 3分50秒の時間を要する.ボトルネックは3.3章の見 た目の復元である.高速化の可能性を探りたい.

図 10: 炎の CG 画像を用いたボリューム・モデリングの結果.

図 11: 単一のカメラで撮影された煙の動画を用いたボリューム・モデリングの結果.

図 12: 単一のカメラで撮影された爆発動画を用いたボリューム・モデリングの結果.

図 13: 提案手法で作った樹木の 3 次元ボリューム.赤 い楕円の中の幹は視点を変えるとすぐに消えてしまう.

参考文献

- Bridson, R., and Müller-Fischer, M. 2007. Fluid simulation: Siggraph 2007 course notes. In ACM SIGGRAPH 2007 Courses, 1–81.
- [2] Gregson, J., Krimerman, M., Hullin, M. B., and Heidrich, W. 2012. Stochastic tomography and its applications in 3d imaging of mixing fluids. ACM Trans. Graph. 31, 4, 52:1-52:10.
- [3] Hasinoff, S. W., and Kutulakos, K. N. 2007. Photoconsistent reconstruction of semitransparent scenes by density-sheet decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 5, 870–885.

- [4] Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proc. of SIGGRAPH '95, 229-238.
- [5] Ihrke, I., and Magnor, M. 2004. Image-based tomographic reconstruction of flames. In Proc. of SCA '04, 365-373.
- [6] Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26, 3.
- [7] Schuster, T. 2007. A filtered back projection algorithm. In The Method of Approximate Inverse: Theory and Applications, vol. 1906 of Lecture Notes in Mathematics, 165–179.
- [8] Reche-Martinez, A., Martin, I., and Drettakis, G. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23, 3, 720–727.
- [9] Portilla, J., and Simoncelli, E. P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vision 40, 1, 49-70.
- [10] McCann, J., and Pollard, N. S. 2012. Soft stacking. Comp. Graph. Forum 31, 2pt2 (Eurographics), 469– 478.