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ABSTRACT

We propose a lightweight and highly accurate method for de-
tecting anomalies in videos. Existing methods use multiple-
instance learning (MIL) to determine the normal/abnormal
status of each segment of the video. Recent successful re-
searches argue that it is important to learn the temporal rela-
tionships among segments to achieve high accuracy, instead
of focusing on only a single segment. We analyzed the ex-
isting methods that have been successful in recent years, and
found that while it is indeed important to learn all segments
together, the temporal relationships among them are irrele-
vant to achieving high accuracy. Based on this finding, we
do not use the MIL framework, but instead introduce a self-
attention mechanism to automatically extract features that are
important for determining normal/abnormal from all input
segments. As a result, the neural network with 1.3% of the
number of parameters of the existing method can achieve the
comparable or better accuracy than the existing method.

Index Terms— Weakly supervised anomaly detection

1. INTRODUCTION

The number of surveillance cameras in the world is increas-
ing every year, and they are used for crime prevention in cities
and for safety confirmation in factories, power plants, and
other large-scale facilities. However, since it is difficult for
humans to see and confirm all of these videos, there is an
urgent need to develop technology that enables artificial in-
telligence to analyze the videos and automatically detect ab-
normal events on behalf of humans. Since abnormal events
are rarely observed, many methods have been proposed that
use only the normal state as training data, and judge whether
the input video is normal or abnormal based on the criterion
of how much it deviates from the learned normal state when
inferring [1, 2, 3, 4, 5]. However, these methods can only de-
tect abnormalities based on low-level features such as differ-
ences in the appearance and velocity in the video. Therefore,
recently, a method has been proposed to train an anomaly de-
tector using a weakly supervised dataset that contains both
normal and abnormal videos [6, 7].

In the weakly supervised dataset, each video is labeled as
normal or abnormal. That is, the videos labeled as normal
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contain only the normal state throughout all frames. On the
other hand, the videos labeled as abnormal contain a mixture
of normal and abnormal frames. By using such a dataset,
it is no longer necessary to label each frame in the video as
normal or abnormal, thus reducing the labeling effort.

Many existing methods treated multiple consecutive
frames as a single short-term segment and used multiple
instance learning (MIL) to determine normal/abnormal for
each segment[6]. However, recent successful methods have
argued that it is important to learn the temporal relationships
among segments by taking all segments from the video as
input together, rather than focusing on only a single seg-
ment [7]. To confirm this, we analyzed these methods on a
dataset of video segments randomly sorted in time. We then
found that while it is indeed important to train all segments
together, the temporal relationship among them is irrelevant
for high accuracy.

Based on this finding, we propose a novel model that does
not rely on MIL, but instead takes all segments as input and
has a self-attention mechanism to automatically extract fea-
tures important for determining normal/abnormal from them.
Despite the fact that the proposed neural network has 1.3%
of the number of parameters of the existing method [7], the
proposed method can achieve the comparable or better accu-
racy than the existing method [7]. We report the frame-level
detection accuracy using benchmark datasets (UCF-Crime,
ShanghaiTech).

2. RELATED WORK

In the real world, most of what we can observe are normal
states, and abnormal events are rarely observed. For this rea-
son, many anomaly detection methods have been developed
using unsupervised learning approaches that learn only the
normal state. In inference, the input video is judged to be
normal or abnormal based on how much it deviates from the
learned normal state. The normal state is learned using Gaus-
sian mixture models [1], sparse dictionary learning [8], au-
toencoders [2, 3, 4, 9], etc. A method that uses multi-task
learning has also been proposed [10].

Recently, a number of methods have been proposed to
learn anomaly detectors using weakly supervised datasets
containing both normal and abnormal videos [6, 7, 11, 12, 13,
14, 15]. Usually, to train a frame-by-frame anomaly detector,
we need to label and train every frame of the video, which



is expensive to label. Sultani et al. developed an anomaly
detector by introducing MIL, which considers a video as a
bag and selects the segment with the highest anomaly score
from the bag for training [6].

Most of the anomaly detection methods using weakly su-
pervised datasets are based on MIL. Zaheer et al. proposed a
method for detecting anomalies using global features of the
entire video and local features of each segment using the at-
tention mechanism and per-video clustering loss [14]. Tian et
al. proposed a top-k strategy that calculates the difference in
anomaly scores between segments and selects the top k seg-
ments with the highest scores for training [7]. These recent
successful methods achieve high detection accuracy by effi-
ciently using the features of multiple segments in the video
instead of just a single segment.

3. METHOD

We propose a lightweight and highly accurate learning
method for detecting anomalies in videos. The proposed
method analyzes the entire video and automatically extracts
and learns the features that are important for determining
normal/abnormal.

Let D = {(Vi, yi)} be the dataset. where Vi is the ith
video in the training dataset and yi is the label attached to
Vi. yi = {0, 1}, 0 indicates normal, and 1 indicates abnor-
mal. In a video labeled as normal, only the normal state is
recorded in all frames. On the other hand, the video labeled
as abnormal contains a mixture of frames with normal and ab-
normal states. Vi is divided into T segments, and each seg-
ment is converted into a D-dimensional feature vector Fi,j

by the feature extractor: Fi,j represents the jth feature vector
of Vi; the feature extractor used throughout all experiments
was I3D [16], which has been trained on the Kineticts dataset.
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Fig. 1. An overview diagram of our method

Our method is a simple model that consists of a self-
attention mechanism and two fully connected layers (Fig. 1).
In the self-attention mechanism, the input Fi is transformed
by Atten-MLP1 multilayer perceptron into a da × T matrix
A1. At this time, the Tanh function is used for activation. A1

is converted to A2, a matrix of r × T , by Atten-MLP2 mul-
tilayer perceptron. At this time, the softmax function is used
for activation. In addition, a dropout regularization of 30% is
also performed.

Using the weight matrix A2 obtained from the self-
attention mechanism, we calculate M = FiA

t
2. After re-

shaping M into a vector of D × r dimensions, it is trans-
formed into the anomaly score through two fully connected
layers FC1 (32 units) and FC2 (1 unit). The activation func-
tion of FC1 is an identity function, and that of FC2 is a
sigmoid function. The binary cross entropy (BCE) function
was used as the loss function.

3.1. Motivation of our method

Several existing methods take into account the temporal rela-
tionships between segments in a video [6, 12, 7]. Sultani et
al. introduced a term in the loss function to impose continu-
ity of the anomaly score, as the anomaly score should vary
continuously in the video [6]. Tian et al. introduced a multi-
scale temporal network (MTN) to capture local and global
temporal features [7]. Both of these methods achieve high
accuracy in anomaly detection. Therefore, we investigated
how the mechanism for capturing the temporal relationship
between segments contributes to the high accuracy.

Specifically, in Fi, the set of feature vectors obtained
from the training video Vi, the feature vectors are ordered
by default as {Fi,1,Fi,2, · · · ,Fi,T }, but we randomly rear-
ranged this order to create a new dataset and used it for train-
ing. The results of the experiments using the UCF-Crime
dataset [6] are shown in Table1. In both methods [6, 7], there
was no degradation in accuracy due to random reordering of
feature vectors.

Method Reorder AUC(%)

Sultani et al. [6] 81.39
✓ 81.54

RTFM [7] 84.30
✓ 84.26

Table 1. Comparison of AUC performance using the UCF-
Crime dataset [6], where the feature vectors of each video are
randomly reordered.

This result indicates that capturing the temporal relation-
ship between segments does not contribute to the accuracy of
the anomaly detector. On the other hand, both Sultani et al.’s
term in the loss function [6], which imposes temporal conti-
nuity, and MTN or top-k strategy [7] in Tian et al.’s method,
have the effect of encouraging more feature vectors to be in-
volved in the training process. In MIL, only a small number
of selected feature vectors can be involved in the training pro-
cess, so it is likely that these systems are trying to efficiently
extract the features that are important for determining nor-
mal/abnormal. Based on the above observations, we hypoth-



esized that the high anomaly detection accuracy achieved by
these methods is due to the fact that they have a mechanism
that allows all segments from the video to be trained together
and extracts salient features from them efficiently.

Our method (Fig. 1) is designed based on the above in-
sights. Our method is not an MIL framework but it is a model
that takes all segments in a video as input and determines
whether the video is normal or abnormal. Since we do not
use MIL, the extraction of salient features can be achieved
with a simple self-attention mechanism. For the self-attention
mechanism, we introduce a model inspired by Lin et al.’s
method [17]: their method targets sentence classification and
can deal with variable length input. We adopted this mecha-
nism because we divide the video Vi into T segments during
training, but the number of segments during inference should
be different dependent on the length of the input video. Our
method is accurate and also lightweight because it does not
have any mechanism to capture temporal relationships.

3.2. Inference

Let Ve be the video to which we want to apply our method
for anomaly detection. First, we divide Ve into N segments
{Ve

1,V
e
2, · · · ,Ve

N} using 16 consecutive frames as one seg-
ment. Each segment Ve

i is converted by I3D [16] into a D-
dimensional feature vector Fe

i . Let the set of feature vectors
be Fe = {Fe

1,F
e
2, · · · ,Fe

N}. Let l be the split size and we
divide Fe into m = N/l bags for every l segments:

Fe = {B1,B2, · · · ,Bm}
= {{Fe

1, · · · ,Fe
l }, {Fe

l+1, · · · ,Fe
2l} · · · {Fe

N−l+1, · · · ,Fe
N}}.

Next, we input B1,B2, · · · ,Bm one by one into our anomaly
detector, and we obtain the inference result
Sv = {sv1, sv2, · · · , svm}. svi is used as the anomaly score for
each segment of {Ve

(i−1)l+1, · · · ,V
e
il}. When it is necessary

to produce the results of frame-level anomaly detection, the
obtained scores are assigned to all frames in each segment.

4. EXPERIMENTS

To evaluate our method, we conducted experiments using
two weakly supervised datasets for anomaly detection (UCF-
Crime dataset [6] and ShanghaiTech dataset [5]).

4.1. Dataset and evaluation measure

UCF-Crime dataset contains 13 types of anomalies. The
total number of videos is 1900, and the total duration of the
videos is 128 hours. Of the 1900 videos, 1610 are training
videos and 290 are test videos. Each training video is labeled
as normal or abnormal for each video. Each test video is
labeled as normal or abnormal for each frame.

ShanghaiTech dataset contains 437 videos captured by
13 fixed cameras. Of the 437 videos, 307 are normal videos

and 130 are videos with anomalies. The original dataset was
intended for the development of an anomaly detector based
on unsupervised learning. However, Zhong et al. labeled
each video so that it could be used as a dataset for weakly su-
pervised learning [13]. We constructed a weakly supervised
dataset using the same procedure as Zhong et al.[13] and con-
ducted experiments.

Evaluation measure: we used the Area Under the
Curve (AUC) with the Receiver Operating Characteris-
tic (ROC) curve, which is calculated based on the frame-
level anomaly detection accuracy, as in the existing stud-
ies [6, 11, 7, 13, 14, 15]. A larger AUC value indicates a
more accurate anomaly detector.

4.2. Implementation detail

Our method was developed and evaluated using PyTorch.
Radam [18] was used as the optimization algorithm, and the
learning rate was set to 0.001. The batch size was set to 64.
As in the existing method [6], mini-batches were created so
that each mini-batch contained an equal number of normal
and abnormal videos. The hyperparameter T was set to 32.
As in the existing method [7, 15], 10-crop augmentation was
performed for each video.

4.3. Results on UCF-Crime

Table 2 shows the frame-level AUC performance on the UCF-
Crime dataset. The split size l is set to 28. Although our
method is a simple model, it achieves 0.61% higher detec-
tion accuracy than RTFM [7], which has the highest accuracy
among the existing methods.

4.4. Results on ShanghaiTech

Table 3 shows the frame-level AUC performance on the
ShanghaiTech dataset. The split size l is set to 21. Our is
1.49% inferior to RTFM [7], which has the highest accuracy
among the existing methods, but our method outperforms the
other existing methods. In addition, the accuracy of more

Method Feature Type AUC(%)
Sultani et al. [6] C3D RGB 75.41

GCN-Anomaly [13] TSN RGB 82.12
CLAWS Net [14] C3D RGB 83.03

Wu et al. [11] I3D RGB 82.44
MIST [15] I3D RGB(Fine) 82.30
RTFM [7] I3D RGB 84.30

Ours (da = 64, r = 3) I3D RGB 84.74
Ours (da = 128, r = 7) 84.91

Table 2. Comparison of frame-level AUC performance on
UCF-Crime dataset.



Method Feature Type AUC(%)
GCN-Anomaly [13] TSN RGB 84.44

CLAWS Net [14] C3D RGB 89.67
RTFM [7] I3D RGB 97.21

Ours (da = 64, r = 3) I3D RGB 95.72

Table 3. Comparison of frame-level AUC performance on
ShanghaiTech dataset.

than 95% is achieved, indicating that a sufficiently practical
anomaly detector can be trained.

4.5. Comparison of the number of trainable parameters

Table 4 shows the number of parameters that can be trained
in the model for each method. Our method is an extremely
lightweight model with a much smaller number of parame-
ters than the existing methods. Even though the number of
parameters is only 1.3% of RTFM [7] when da = 64 and
r = 3, our method achieves higher accuracy than RTFM [7]
in Table 2, and achieves a comparable high accuracy in Ta-
ble 3. It is also the lightest model among the existing methods
even when da = 128 and r = 7, which achieves even higher
accuracy.

Method Number of Parameters
Sultani et al. [6] 2,114,113
Wu et al. [11] 769,155

RTFM [7] 24,718,849
Ours (da = 64, r = 3) 328,004

Ours (da = 128, r = 7) 721,992

Table 4. Comparison of the number of trainable parameters.

4.6. Analysis on the hyperparameters da and r

We defined da and r as hyperparameters in Sec. 3. By chang-
ing the hyperparameters, the number of trainable parameters
changes, and the detection accuracy also changes. Therefore,
using the UCF-Crime dataset, we investigated how changes
in hyperparameters affect the detection accuracy. The split
size l was set to 32. The results are shown in Fig. 2. The
points surrounded in red represent the highest detection ac-
curacy for each da. Focusing only on r, if r is larger than 3,
detection accuracy is almost stable and its variation is small.
Focusing on the relationship between da and r, if da is in-
creased, r should also be increased to some extent to obtain
better detection accuracy. However, if r is made too large,
the detection accuracy will decrease. Up to 256, better detec-
tion accuracy could be obtained by increasing da, but when
da was increased to 512, the overall detection accuracy de-
creased regardless of the value of r. This may be due to over-
fitting caused by making the model too large.
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Fig. 2. Relationship between hyperparameters (da and r) and
AUC performance on the UCF-Crime dataset.

4.7. Analysis on the split size l

We defined the split size l in Sec. 3.2. Since our method di-
vides N feature vectors into m = N/l bags during inference,
each bag contains l feature vectors. Since the detection accu-
racy varies depending on the split size l, we used the UCF-
Crime dataset to investigate how the change in l affects the
detection accuracy. The result for da = 64 and r = 3 and
the result for da = 128 and r = 7 are shown in Fig. 3. The
points surrounded in red represent the highest detection accu-
racy for each hyperparameter set. The detection accuracy is
increased until l is around 16. Since our method analyzes the
entire video, it requires a certain length of the video, which
means that a certain split size is necessary. On the other hand,
when the split size l is larger than 16, the detection accuracy
is stable, indicating that our method can analyze the whole
video efficiently if the video is long enough.
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Fig. 3. Relationship between the split size l and AUC perfor-
mance during inference on the UCF-Crime dataset

5. CONCLUSION

We have proposed a lightweight and accurate weakly super-
vised learning method for anomaly detection from video.
Since MIL is not used, the extraction of salient features can
be achieved with a simple self-attention mechanism. We
show that the proposed model is simple and lightweight, yet
achieves the comparable or better accuracy than the existing
method.
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