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Abstract

We propose a lightweight and accurate method for
detecting anomalies in videos. Existing methods used
multiple-instance learning (MIL) to determine the nor-
mal/abnormal status of each segment of the video. Recent
successful researches argue that it is important to learn the
temporal relationships among segments to achieve high ac-
curacy, instead of focusing on only a single segment. There-
fore we analyzed the existing methods that have been suc-
cessful in recent years, and found that while it is indeed
important to learn all segments together, the temporal or-
ders among them are irrelevant to achieving high accuracy.
Based on this finding, we do not use the MIL framework, but
instead propose a lightweight model with a self-attention
mechanism to automatically extract features that are impor-
tant for determining normal/abnormal from all input seg-
ments. As a result, our neural network model has 1.3%
of the number of parameters of the existing method. We
evaluated the frame-level detection accuracy of our method
on three benchmark datasets (UCF-Crime, ShanghaiTlech,
and XD-Violence) and demonstrate that our method can
achieve the comparable or better accuracy than state-of-
the-art methods.

1. Introduction

The number of surveillance cameras in the world is in-
creasing every year, and they are used for crime preven-
tion in cities and for safety confirmation in factories, power
plants, and other large-scale facilities. However, since it is
difficult for humans to see and confirm all of these videos,
there is an urgent need to develop technology that enables
artificial intelligence to analyze the videos and automati-
cally detect abnormal events on behalf of humans. Since
abnormal events are rarely observed, many methods have
been proposed that use only the normal state as training
data, and judge whether the input video is normal or abnor-
mal based on the criterion of how much it deviates from the
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learned normal state when inferring [13} 12, [7, 19, 8]]. How-
ever, these methods can only detect abnormalities based on
low-level features such as differences in the appearance and
velocity in the video. Therefore, recently, a method has
been proposed to train an anomaly detector using a weakly
supervised dataset that contains both normal and abnormal
videos [27, 128]].

In the weakly supervised dataset, each video is labeled
as normal or abnormal. That is, the videos labeled as nor-
mal contain only the normal state throughout all frames. On
the other hand, the videos labeled as abnormal contain a
mixture of normal and abnormal frames. By using such a
dataset, it is no longer necessary to label each frame in the
video as normal or abnormal, thus reducing the labeling ef-
fort.

Many existing methods treated multiple consecutive
frames as a single short-term segment and used multiple
instance learning (MIL) to determine normal/abnormal for
each segment [27]]. However, recent successful methods
have argued that it is important to learn the temporal rela-
tionships among segments by taking all segments from the
video as input together, rather than focusing on only a single
segment [28]. To confirm this, we analyzed these methods
on a dataset of video segments randomly sorted in time. We
then found that while it is indeed important to train all seg-
ments together, the temporal order among them is irrelevant
for high accuracy.

Based on this finding, we propose a novel model that
does not rely on MIL, but instead takes all segments as in-
put and has a self-attention mechanism to automatically ex-
tract features important for determining normal/abnormal
from them. Despite the fact that the proposed neural net-
work has 1.3% of the number of parameters of the existing
method [28]], the proposed method can achieve the compa-
rable or better accuracy than state-of-the-art methods. We
report the frame-level detection accuracy on three bench-
mark datasets (UCF-Crime [27]], ShanghaiTech [18]], and
XD-Violence [33]).

In summary, this paper has three contributions:

* We analyzed the existing methods and
found that while it is important to learn



all segments together, the temporal orders
among them are irrelevant to achieving high
accuracy.

e Based on this finding, we propose a
lightweight and accurate method for video
anomaly detection. Our method outper-
forms existing methods for the UCF-Crime
dataset despite its lightweight model, a neu-
ral network with 1.3% trainable parame-
ters. We also show that our method out-
performs existing methods for the XD-
Violence dataset when the model is ex-
tended by adding a bi-directional LSTM.

* A detailed analysis of our method was per-
formed: visualization and observation of the
attention map show that our self-attention
mechanism works for extract salient fea-
tures similarly to the top-k strategy in exist-
ing methods. The relationship between hy-
perparameters and accuracy was also inves-
tigated in detail.

Our method is a simple model with a self-attention mech-
anism and appears to be a commonplace model. How-
ever, our technical contribution is that we arrived at such
a lightweight model based on our observations and analysis
of existing methods and found that this model is sufficient
to achieve the comparable or better accuracy than state-of-
the-art methods.

2. Related work

In the real world, most of what we can observe are nor-
mal states, and abnormal events are rarely observed. For
this reason, many anomaly detection methods have been de-
veloped using unsupervised learning approaches that learn
only the normal state. In inference, the input video is
judged to be normal or abnormal based on how much it
deviates from the learned normal state. The normal state
can be learned using a set of mixture of dynamic textures
models [[13], a space-time Markov random field (MRF)
model [12], Gaussian mixture models [2], and sparse dic-
tionary learning [4,17], etc. Deep learning approaches have
been also proposed, such as a method for analyzing the
temporal changes in the CNN features [23[], autoencoder-
based methods [34} 7, 19, I8, [11] and GAN-based meth-
ods [24} 26], etc. A method that uses multi-task learning
has also been proposed [[6]. However, these methods are
basically only able to detect anomalies based on low-level
features such as differences in the appearance and velocities
of the video.

Recently, in order to develop higher-level anomaly de-
tectors, a number of methods have been proposed to learn

anomaly detectors using weakly supervised datasets con-
taining both normal and abnormal videos [27} [28 33} 139,
40, 136, 15, 22]]. Usually, to train a frame-by-frame anomaly
detector, we need to label and train every frame of the video,
which is expensive to label. Therefore, Sultani et al. pro-
posed a weakly supervised dataset where not each frame but
each video is labeled as normal or abnormal [27]]. They also
developed an anomaly detector by introducing MIL, which
considers a video as a bag and selects the segment with the
highest anomaly score from the bag for training.

Most of the anomaly detection methods using weakly su-
pervised datasets are based on MIL. MIL-based methods
have a problem that they have a negative impact on learn-
ing when they select normal parts of anomalous videos for
learning. To cope with this problem, Zhong et al. proposed
an approach that considers the weakly supervised dataset as
a dataset containing incorrect labels, and uses graph convo-
lutional neural networks to correct the incorrect labels and
learn from them [40]]. Tian et al. proposed a top-k strat-
egy that calculates the difference in anomaly scores between
segments and selects the top k£ segments with the highest
scores for training [28]. Sapkota et al. proposed a model
that does not require the selection of the parameter k by in-
troducing distributionally robust optimization [25]. Zaheer
et al. does not rely on MIL-based approach but proposed a
method for detecting anomalies using global features of the
entire video and local features of each segment using the
attention mechanism and per-video clustering loss [36 37].
These recent successful methods achieve high detection ac-
curacy by efficiently using the features of multiple segments
in the video instead of just a single segment.

Recently, Zaheer et al. proposed a method for unsu-
pervised video anomaly detection and reported significant
improvements over existing unsupervised methods through
experiments on the benchmark datasets (UCF-Crime and
ShanghaiTech) [38]. Acsintoae et al. proposed UBnor-
mal, a new benchmark dataset for supervised video anomaly
detection consisting of virtual scenes and annotated at the
pixel level [1]].

3. Method

We propose a lightweight and accurate learning method
for detecting anomalies in videos. The proposed method
analyzes the entire video and automatically extracts and
learns the features that are important for determining nor-
mal/abnormal.

Let D = {(V;,y;)} be the dataset. where V; is the ith
video in the training dataset and y; is the label attached to
V. y; = {0,1}, 0 indicates normal, and 1 indicates abnor-
mal. In a video labeled as normal, only the normal state is
recorded in all frames. On the other hand, the video labeled
as abnormal contains a mixture of frames with normal and
abnormal states. V; is divided into 7" segments, and each



segment is converted into a D-dimensional feature vector
F; ; by the feature extractor: F; ; represents the jth fea-
ture vector of V;; the feature extractor used throughout all
experiments was 13D [3]], which has been trained on the Ki-
neticts dataset.

d r
Self- a A S
Attention Atten ! Atten K@'b oD
i MLP1 | £ MLP2 | ¢ &
Mechanism < g
S
e \ S
4,
> O M
Fi Fia||Fiz
Sigmoid
Video Label

i i o

Video Anomaly score

Figure 1. An overview diagram of our method

Our method is a simple model that consists of a self-
attention mechanism and two fully connected layers (Fig-
ure E]) In the self-attention mechanism, the input F; is
transformed by Atten-MLP1 multilayer perceptron into a
d, x T matrix A1. At this time, the Tanh function is used
for activation. A is converted to Ao, a matrix of r x T', by
Atten-MLP2 multilayer perceptron. At this time, the soft-
max function is used for activation. In addition, a dropout
regularization of 30% is also performed.

Using the weight matrix A, obtained from the self-
attention mechanism, we calculate M = FlAg After re-
shaping M into a vector of D x r dimensions, it is trans-
formed into the anomaly score through two fully connected
layers FC1 (32 units) and FC2 (1 unit). The activation func-
tion of FC1 is an identity function, and that of FC2 is a
sigmoid function. The binary cross entropy (BCE) function
was used as the loss function.

Note that our self-attention mechanism does not deal
with temporal orders. As we see in the operations through
Atten-MLP1 and Atten-MLP2, the vector in column j of the
attention map A, depends only on the feature vector F; ; in
column j. In other words, shuffling the input feature vec-
tors F; ; in the temporal direction (column direction) does
not change the video anomaly score, which is the output of
the model.

3.1. Motivation of our method

Several existing methods take into account the tempo-
ral relationships between segments in a video [27, |39} 28,
36, 137]]. Sultani et al. introduced a term in the loss func-
tion to impose continuity of the anomaly score, as the

anomaly score should vary continuously in the video [27].
Zaheer et al. also used the similar term in their loss func-
tion [36, [37]]. Tian et al. introduced a multi-scale tempo-
ral network (MTN) to capture local and global temporal
features [28]]. All of these methods achieve high accuracy
in anomaly detection. Therefore, we investigated how the
mechanism for capturing the temporal relationship between
segments contributes to the high accuracy.

Specifically, in F;, the set of feature vectors obtained
from the training video Vj, the feature vectors are ordered
by default as {F;1,F;2,--- ,F; v}, but we randomly re-
arranged this order to create a new dataset and used it for
training. The results of the experiments using the UCF-
Crime dataset [27]] are shown in Tabldl} In both meth-
ods [27, 28]], there was no degradation in accuracy due to
random reordering of feature vectors.

Table 1. Comparison of AUC performance using the UCF-Crime
dataset [27], where the feature vectors of each video are randomly
reordered. Here, we used not C3D but 13D with 10-crop augumen-
tation for Sultani et al.’s method [27]]

Method Reorder AUC(%)
. 81.39
Sultani et al. [27] v ’1.54
84.30
RTEM [28] v 84.26

This result indicates that capturing the temporal order
between segments does not contribute to the accuracy of
the anomaly detector.

The temporal smoothness term introduced by Sultani et
al. minimizes the difference in anomaly scores between
temporally adjacent segments [27]. However, from the
above results, we infer that this term has the regulariza-
tion effect of ensuring that all segments in a video have
similar anomaly scores, rather than constraining the tem-
poral order between segments. Zaheer et al. reported a de-
crease in accuracy without this term [36, 37], which may
indicate the importance of the regularization effect that the
temporal smoothness term brings. Although the MTN and
top-k strategies used in Tian et al.’s method [28] are more
complex, and we would expect them to analyze more com-
plex temporal relationships than just temporal order, the
above results indicate that temporal order is not important.
Based on the above observations, we hypothesized that the
high anomaly detection accuracy achieved by these meth-
ods is due to the fact that they have a mechanism that al-
lows all segments from the video to be trained together and
extracts salient features that are important for determining
normal/abnormal.

Our method (Figure [T)) is designed based on the above
insights. Our method is not an MIL framework but it is a



model that takes all segments in a video as input and de-
termines whether the video is normal or abnormal. Since
we do not use MIL, the extraction of salient features can be
achieved with a simple self-attention mechanism. For the
self-attention mechanism, we introduce a model inspired
by Lin et al.’s method [14]: their method targets sentence
classification and can deal with variable length input. We
adopted this mechanism because we divide the video V;
into T' segments during training, but the number of seg-
ments during inference should be different dependent on the
length of the input video. Our method is accurate and also
lightweight because it does not have any mechanism to cap-
ture temporal orders.

Our self-attention mechanism is similar in concept to
that of Claws [36} 1377]], but there are some differences be-
tween them. Claws generates the attention map twice but
our method generates it once. While Claws’ paper states
that the purpose of introducing the self-attention mecha-
nism is to suppress normalcy, our purpose is to extract
salient features that are important in determining normal-
ity/abnormality.

3.2. Inference

Let V¢ be the video to which we want to apply our
method for anomaly detection. First, we divide V¢ into NV
segments {V¢, Vs, .-+, V5 } using 16 consecutive frames
as one segment. Each segment V7 is converted by I3D [3]
into a D-dimensional feature vector F{. Let the set of fea-
ture vectors be F¢ = {F{,F5,--- ,F%}. Let [ be the split
size and we divide F¢ into m = N/I bags for every [ seg-
ments:
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Next, we input By,Bs,--- ,B,, one by one into our
anomaly detector, and we obtain the inference result

Sv = {s},s%, -+ ,su}. s¥ is used as the anomaly score
for each segment of {V; ), ,---, V§}. Wheniitis nec-
essary to produce the results of frame-level anomaly detec-
tion, the obtained scores are assigned to all frames in each

segment.

4. Experiments

To evaluate the proposed method, we conducted
experiments on three weakly supervised datasets for
anomaly detection: UCF-Crime dataset [27]], ShanghaiTech
dataset [18]], and XD-Violence dataset [33]]. We compare
the detection accuracy with several existing methods.

4.1. Dataset and evaluation measure

UCF-Crime dataset is a large dataset of real-world
surveillance video [27]. This dataset contains 13 types of

anomalies. The total number of videos is 1900, and the total
duration of the videos is 128 hours. 1610 of the 1900 videos
are for training and 290 are for testing. Each training video
is labeled as normal/abnormal on a per-video basis. In each
test video, each frame is labeled as normal or abnormal.

ShanghaiTech dataset is a medium-sized dataset of
videos captured by fixed cameras installed in the university.
The dataset contains 437 videos captured by 13 fixed cam-
eras. Of the 437 videos, 307 are normal videos and 130 are
videos with anomalies. The original dataset was intended
for the development of an anomaly detector based on unsu-
pervised learning [[18]]. However, Zhong et al. labeled each
video so that it could be used as a dataset for weakly super-
vised learning [40]. We constructed a weakly supervised
dataset using the same procedure as Zhong et al. [40] and
conducted experiments.

XD-Violence dataset is a large dataset containing vari-
ous types of videos, such as movies and videos from video
sharing sites. The total number of videos is 4754, and the
total duration of the videos is 217 hours. 2405 of the 4754
videos contain 6 types of anomalies: fighting, shooting, riot,
abuse, explosion, and car accident. 2349 of the 4754 videos
are normal. As in UCF-Crime dataset, each training video is
labeled with a per-video label, and each test video is labeled
with a per-frame label.

Evaluation measure: for UCF-Crime and Shang-
haiTech datasets, we used the Area Under the Curve (AUC)
with the Receiver Operating Characteristic (ROC) curve,
which is calculated based on the frame-level anomaly de-
tection accuracy, as in the existing studies [27, 28 |39} 41,
40,1361 133115118, [7]; a larger AUC value indicates a more ac-
curate anomaly detector. For XD-Violence dataset, we used
Average Precision (AP) as the evaluation measure, as in the
existing study [33} 28]]; a larger AP value indicates a more
accurate anomaly detector.

4.2. Implementation detail

Our method was developed and evaluated using Py-
Torch [21]]. Radam [16]] was used as the optimization algo-
rithm, and the learning rate was set to 0.001. The batch size
was set to 64. As in the existing method [27]], mini-batches
were created so that each mini-batch contained an equal
number of normal and abnormal videos, i.e., 32 normal
videos and 32 abnormal videos in our case. The hyperpa-
rameter 1" was set to 32. For UCF-Crime and ShanghaiTech
datasets, as in the existing method [28 15], 10-crop aug-
mentation was performed for each video. For XD-Violence
dataset, we performed 5-crop augmentation for each video
as in the existing method [33]].

4.3. Analysis on Our Model

We have experimented with adding the bi-directional
long short-term memory (LSTM) to our model and re-



moving the self-attention mechanism from our model. In
the context of sentence classification, the model of Lin et
al. [14] achieves high classification accuracy, where the
self-attention mechanism is used after the bi-directional
LSTM. Inspired by this, we also extended our model by
adding the bi-directional LSTM and evaluated the accuracy
of anomaly detection. Specifically, our model proposed in
Section[3]directly inputs F; into the Atten-MLP1 (Figure[T).
In the model with the bi-directional LSTM, F, is first input
to the bi-directional LSTM and the output from it is input to
the Atten-MLP1. The dimension of the hidden layer of the
LSTM was set to 256.

The experimental results are shown in Table For
UCF-Crime and ShanghaiTech datasets, we used the fea-
tures obtained by I3D, while for XD-Violence dataset, since
it contains audio information, we used the features ob-
tained by VGGish [10] in addition to I3D. For UCF-Crime
and ShanghaiTech datasets, the model using only the self-
attention mechanism without the bi-directional LSTM (the
model proposed in Section 3] achieved the highest detection
accuracy. For XD-Violence dataset, the model with both bi-
directional LSTM and self-attention mechanism achieved
the highest detection accuracy. This may be due to the fact
that each video in XD-Violence dataset contains audio in-
formation, and the bi-directional LSTM may have worked
effectively for audio information.

Table 2. Results of experiments on the addition of the bi-
directional LSTM (BL) to our model and the removal of the self-
attention mechanism (SA) from our model

BL SA \ UCF-Crime  ShanghaiTech  XD-Violence

v 81.72 92.90 75.92
v 84.91 95.72 75.46
v v 83.28 94.06 82.89

4.4. Results on UCF-Crime

Table [3] shows the frame-level AUC performance on the
UCF-Crime dataset. The split size [ is set to 28. Compared
to MIST [5] and Wu et al. [33]], which use the same 13D
RGB features, our method achieves higher detection accu-
racy. Although our method is a simple model, it achieves
the highest detection accuracy 84.91% and this is 0.61%
higher than RTFM [28]], which has the highest accuracy
among the existing methods.

4.5. Results on ShanghaiTech

Table @] shows the frame-level AUC performance on the
ShanghaiTech dataset. The split size [ is set to 21. Our
detection accuracy is 95.72% and this is 1.49% inferior to
RTFM [28]], which has the highest accuracy among the ex-
isting methods. However, our method achieves the second

Table 3. Comparison of frame-level AUC performance on the
UCF-Crime dataset. Blue is the highest value and red is the sec-
ond highest value

Supervision Method \ Feature Type \ AUC(%)
SVM Baseline - 50.00
One-class Conv-AE [8] - 50.60
. Luetal. [17] - 65.51
classifier BODS [30] - 68.26
GODS [30] - 70.46
NLN [31] NLN RGB 78.9
Supervised Lin et al. [[15]] C3D RGB 70.1
Lin et al. [13] NLN RGB 82.0
Sultani et al. [27]] C3D RGB 75.41
Zhang et al. [39] C3D RGB 78.66
Motion-Aware [41] PWC Flow 79.00
GCN-Anomaly [40] TSN RGB 82.12
Weakly CLAWS Net [36] C3D RGB 83.03
Supervised CLAWS Net+ [37]] C3D RGB 83.37
CLAWS Net+ [37]] 3DResNext 84.16
Wau et al. [33] 13D RGB 82.44
MIST [3] 13D RGB (Fine) 82.30
RTFM [28] C3D RGB 83.28
RTFM [28]] 13D RGB 84.30
Our (dq=64,r=3) 84.74
Our (d,=128,r=7) 3D RGB 84.91

highest value and outperforms the other existing methods.
In addition, the accuracy of more than 95% is achieved, in-
dicating that a sufficiently practical anomaly detector can be
trained.

Table 4. Comparison of frame-level AUC performance on the
ShanghaiTech dataset. Blue is the highest value and red is the
second highest value

Supervision Method | Feature Type | AUC(%)
Conv-AE [8] - 60.85
One-class Frame-Pred [32] - 73.40
classifier Mem-AE [/7] - 71.20
VEC [35] - 74.80
GCN-Anomaly [40] TSN RGB 84.44
Zhang et al. [39] 13D RGB 82.50
CLAWS Net [36] C3D RGB 89.67
Weakly CLAWS Net+ [37]] C3D RGB 90.12
Supervised CLAWS Net+ [37]] 3DResNext 91.46
AR-Net [29] 13D RGB&Flow 91.24
MIST [3]] 13D RGB (Fine) 94.83
RTEM [28]] C3D RGB 91.51
RTFM [28] 13D RGB 97.21
Our (d,=64,r=3) 13D RGB 95.72




4.6. Results on XD-Violence

Table [5] shows the frame-level AP performance on the
XD-Violence dataset. The split size [ is set to 9. When
using only I3D RGB features, our method was inferior to
Wau et al. [33]] and RTFM [28]]. Since XD-Violence dataset
contains audio information, we can also use audio features
(VGGish) [10] in addition to I3D RGB features as Wu et
al. [33] and Pang et al. [20] did. When using the audio fea-
tures, as mentioned in Section [£.3] we extend our model
by adding the bi-directional LSTM in front of the self-
attention mechanism, which is represented as “Ours{” in
Table [5S| This extended model achieves the highest detec-
tion accuracy 82.89%: this is 1.2% higher than that of Pang
et al. [20]], which is a method dedicated to anomaly detec-
tion based on multimodal information.

Table 5. Comparison of frame-level AP performance on XD-
Violance dataset. Blue is the highest value and red is the sec-
ond highest value. “Oursf” represents the model that adds bi-
directional LSTM to our original model

Supervision Method [ Feature Type [ AP(%)
One-class SVM baseline - 50.78
classifier Hasan et al. [9] - 30.77
Sultani et al. [27] C3D RGB 73.20

Wu et al. [33]] 75.68

RTEM [28]] 13D RGB 77.81

Weakly Ours (dq=64,r=3) 73.25
Supervised Wu et al. [33]] 78.64
Pang et al. [20] 13D RGB 81.69

Ours (dq=64,r=3) +VGGish 75.46

Ourst (d,=64,r=3) 79.92

Ourst (d,=128,r=1) 82.89

4.7. Comparison of the number of
trainable parameters

Table [6] shows the number of parameters that can be
trained in the model for each method. Our method is an
extremely lightweight model with a much smaller number
of parameters than the existing methods. Even though the
number of parameters is only 1.3% of RTFM [28] when
dg, = 64 and r = 3, our method achieves higher accuracy
than RTFM (28] in Table[3] and achieves a comparable high
accuracy in Table[d] It is also the lightest model among the
existing methods even when d, = 128 and r = 7, which
achieves even higher accuracy.

4.8. Visualization of Attention Map

It was described in Section 3 that our method does not
use the MIL framework and so the self-attention mecha-
nism can be used for extracting salient features. Therefore,
we visualize Ao, the attention map, to investigate whether

Table 6. Comparison of the number of trainable parameters
Method

Number of Parameters

Sultani et al. [27] 2,114,113
Wu et al. [33] 769,155
RTFM [28]] 24,718,849
Ours (dg = 64,7 = 3) 328,004
Ours (dq = 128, =17) 721,992

such salient features are really extracted. Here we visualize
A, for “Buruglary030”, which is one of the training videos
in the UCF-Crime dataset. Figure 2] shows the heatmap of
A, for the 50-th iteration, the 500-th iteration, and the high-
est detection accuracy. Note that one iteration here means
training on one mini-batch. As the training progresses, the
weights are concentrated on specific segments, indicating
that the self-attention mechanism is automatically learning
the segments of interest. The fact that the weights are con-
centrated on multiple segments instead of one indicates that
the self-attention mechanism has an effect similar to the top-
k strategy of RTFM [28]].

4.9. Performance on each anomaly class

Figure (3| shows the AUC performance of the proposed
method for each anomaly class on the UCF-Crime dataset.
Our method achieves higher or comparable detection ac-
curacy compared to RTFM [28] for six classes of anoma-
lies: Abuse, Arrest, Assault, Explosion, RoadAccidents,
and Stealing. In particular, for the four classes of anoma-
lies, Abuse, Assault, Explosion, and Stealing, the detection
accuracy was improved by more than 6%. Since these four
classes of anomalies cannot be detected without long-term
analysis of the motion of objects and people, we suspect
that these results indicate that the proposed method success-
fully captures the long-term features of the videos. For the
four classes of Arrest, Arson, RoadAccidents, and Shoot-
ing, our method performed comparably to RTFM. For the
four classes of Burglary, Fighting, Robbery, and Shoplift-
ing, our method was inferior to RTFM. Our method may be
still difficult to classify instantaneous anomalies. In addi-
tion, RTFM seems to be a method that is goot at capturing
features on human movement.

4.10. Analysis on the hyperparameters d, and r

We defined d,, and r as hyperparameters in Section[3] By
changing the hyperparameters, the number of trainable pa-
rameters changes, and the detection accuracy also changes.
Therefore, using the UCF-Crime dataset, we investigated
how changes in hyperparameters affect the detection accu-
racy. The split size [ was set to 32. The results are shown in
Figure [d] The points surrounded in red represent the high-
est detection accuracy for each d,. Focusing only on 7, if
is larger than 3, detection accuracy is almost stable and its
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Figure 3. AUC performance by anomaly classes in UCF-Crime
dataset

variation is small. Focusing on the relationship between d,
and r, if d, is increased, r should also be increased to some
extent to obtain better detection accuracy. However, if r is
made too large, the detection accuracy will decrease. Up
to 256, better detection accuracy could be obtained by in-
creasing d,, but when d, was increased to 512, the overall
detection accuracy decreased regardless of the value of r.
This may be due to overfitting caused by making the model
too large.

85.0

83.0

Figure 4. Relationship between hyperparameters (d, and r) and
AUC performance on the UCF-Crime dataset

We also investigated the influence of hyperparameters on
the detection accuracy using the XD-Violence dataset. Here
we use the extended model with the bi-directional LSTM
and set the split size [ to 32. The results are shown in
Figure [5] It can be seen that good detection accuracy is

achieved when r = 1, regardless of the value of d,. In the
case of the model with the bi-directional LSTM, usage of
a model that is too large for the self-attention mechanism
may cause overfitting.
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Figure 5. Relationship between hyperparameters (d, and r) and

AP performance on the XD-Violence dataset
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Figure 6. Relationship between the split size [ and AUC perfor-
mance during inference on the UCF-Crime dataset

4.11. Analysis on the split size |

We defined the split size [ in Section 3.2] Since our
method divides N feature vectors into m = N/I bags dur-
ing inference, each bag contains [ feature vectors. Since the
detection accuracy varies depending on the split size [, we
used the UCF-Crime dataset to investigate how the change
in [ affects the detection accuracy. The result for d, = 64
and r = 3 and the result for d, = 128 and r» = 7 are shown
in Figure[6] The points surrounded in red represent the high-
est detection accuracy for each hyperparameter set. The de-
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Figure 7. Visualization of the anomaly scores of our method. Black lines show the transition of anomaly scores. Orange blocks indicate
ground truth. Blue arrows indicate correctly detected anomalies. Red arrows indicate incorrectly detected anomalies

tection accuracy is increased until [ is around 16. Since
our method analyzes the entire video, it requires a certain
length of the video, which means that a certain split size is
necessary. On the other hand, when the split size [ is larger
than 16, the detection accuracy is stable, indicating that our
method can analyze the whole video efficiently if the video
is long enough.

4.12. Qualitative Analysis

Figure [7] shows the transition of anomaly scores pre-
dicted by our method for the videos of “Burglary061”,
“Explosion033”, “Normal352”, and “Shoplifting015” in the
UCF-Crime datasets. The hyperparameters d, and r are set
to 128 and 7, respectively, and the split size [ is set to 16.
Our method successfully detects abnormal frames when a
burglar is breaking the window glass and stealing items as
shown in Figure [7}a, or abnormal frames when an explo-
sion accident happens and then dust is flying as shown in
Figure[7}b. Our method correctly detects anomalies that are
occurring for a long period of time. Figure [/}c shows a
video at a gas station that does not contain any anomalies,
and our method does not cause any false positives. Figure[7}
d is an failure case. This is a video of a man shoplifting
items placed on a counter. Although our method is able to
detect anomalies, there are moments when false positives
are detected. As described in Section 9] our method is not
good at detecting short-term anomalies. For a instantaneous
anomaly such as shoplifting, the frames before and after the
anomaly may be identified as anomalies in addition to the
moment when the anomaly actually occurred.

5. Conclusion

We have proposed a lightweight and accurate weakly su-
pervised learning method for anomaly detection from video.
Since MIL is not used, the extraction of salient features can
be achieved with a simple self-attention mechanism. We
show that the proposed model is simple and lightweight,
yet achieves the comparable or better accuracy than state-
of-the-art methods.
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