
Semi-Automatic Synthesis of Videos of Performers
Appearing to Play User-Specified Music

Tomohiro Yamamoto
UEC

yamamoto@onailab.com

Makoto Okabe
UEC/JST PRESTO

m.o@acm.org

Yusuke Hijikata
UEC

hijikata@onailab.com

Rikio Onai
UEC

onai@cs.uec.ac.jp

2-11, Fujimicho, Chofu, 182-0033, Tokyo, Japan

ABSTRACT
We propose a method to synthesize the video of a user-specified band music, in which the performers appear to
play it nicely. Given the music and videos of the band members as inputs, our system synthesizes the resulting
video by semi-automatically cutting and concatenating the videos temporarily so that these synchronize to the
music. To compute the synchronization between music and video, we analyze the timings of the musical notes
of them, which we estimate from the audio signals by applying techniques including short-time Fourier transform
(STFT), image processing, and sound source separation. Our video retrieval technique then uses the estimated
timings of musical notes as the feature vector. To efficiently retrieve a part of the video that matches to a part of
the music, we develop a novel feature matching technique more suitable for our feature vector than dynamic-time
warping (DTW) algorithm. The output of our system is the project file of Adobe After Effects, on which the user
can further refine the result interactively. In our experiment, we recorded videos of performances of playing the
violin, piano, guitar, bass and drums. Each video is recorded independently for each instrument. We demonstrate
that our system helps the non-expert performers who cannot play the music well to synthesize its performance
videos. We also present that, given an arbitrary music as input, our system can synthesize its performance video
by semi-automatically cutting and pasting existing videos.

Keywords
Video Synthesis Music Analysis Multimedia

Figure 1: We want to synthesize the video of our fa-
vorite music (a) played by our band members. We have
recorded the performance videos of our band members
(b), but they were not perfect. So, we developed a sys-
tem (c) that takes the music and the videos as inputs,
and synthesizes the video composite (d) in which all
the members appear to play the music nicely.

1 INTRODUCTION
Synchronization between sound and footage is an im-
portant task when producing a high-quality movie. For
this task, the designers must spend a lot of time 1) to
add sound effects or music to a silent footage or 2) to

edit the footage so that it synchronizes with the given
sounds or music. In this paper, we focus on this second
demand, i.e., we develop a system to help the designer,
who creates a musical performance video, to efficiently
synthesize it.

Today, more and more people have become interested
in synthesizing an original video using their favorite
music. Especially, in video-sharing services such as
YouTube, we can find a lot of music videos created by
the professional and amateur designers, which a lot of
people enjoy every day. Note that watching the music
video is the totally different experience from only lis-
tening to the music. For example, we can tend to pay
more attention to the sounds of the currently watching
instrument: watching the bass performance allows us to
more easily capture the low-pitched bass sounds. It is
also reported that the movie affects how we, audiences,
feel the rhythm and moods of the music [10].

As related researches, there are several methods that
synthesize videos synchronizing to user-specified mu-
sic, e.g., the summarization of home videos based on
a user-specified music [4], the creation of the slide-
show video of photographs [6], or the dance perfor-
mance videos using 3D human models [5, 11] or the
2D performance videos [8]. However, since all of these



Figure 2: The overview of synthesizing a performance video of a single instrument (Guitar, here).

approaches analyze only the tempos and moods of the
input music, we cannot apply these techniques to our
problem: since we want to synthesize a performance
video in which the performer looks like playing the mu-
sic, we require finer synchronization.

Given a user-specified music and videos of performers,
our method semi-automatically synthesizes the music
video. We usually record the video for each instru-
ment independently and then create the video database.
We then estimate the timings of the musical notes by
analyzing the audio signals of the music and video
database. Using the estimated timings as the feature
vector, our system retrieves the candidates of footages
for each part of the input music. The output is the
project file of Adobe After Effect that has multiple can-
didates, in which the user can further edit the result.

We asked the two types of performers to join in our
experiments. In the first experiment, we asked ama-
teur performers who can play each instrument well. We
recorded the performances of playing viola, drums, and
bass. In the second experiment, our performers are
novices, i.e., who didn’t know how to play each in-
strument at first: we then asked them to practice each
instrument for one hour. In each case, we demon-
strate that our system can synthesize a reasonable per-
formance video in short editing times.

2 SYSTEM OVERVIEW
Our system consists of 2 parts: the first part synthesizes
a solo performance video of a single instrument (Fig. 2),
and the second part synthesizes the band performance
video by mixing all the synthesized solo videos (Fig. 3).
In Fig. 2, The user begins to synthesize a solo per-
formance video by specifying a favorite music (Fig. 2-
a). If the input music includes multiple instruments,
we first separate it into solo audio signals using sound
source separation technique (Sec. 3.2).

Here, we show the guitar signal of the input music
(Fig. 2-c), and the video of playing the guitar (Fig. 2-
d). We then apply our technique of extracting the tim-
ings of musical notes (Figs. 2-e and f). In each feature
vector, the peak position corresponds to the estimated
timing of a musical note, and the distance from it to
the next peak corresponds to the duration of the note.

Figure 3: To synthesize the band performance consist-
ing of multiple instruments, our system selects the ade-
quate part from each solo performance video and con-
catenate them. Here, we selects red, orange, and green
parts and concatenate them.

The system then computes the part-by-part matching
between the feature vectors of the input music and the
video (Fig. 2-e). Finally, We synthesize the solo perfor-
mance video by concatenating the videos based on the
matches (Fig. 2-f). After synthesizing solo performance
videos for each instrument, our second part synthesizes
the band performance video by further cutting and con-
catenating them (Fig. 3).

3 FEATURE EXTRACTION
In this section, we describe the feature extraction, i.e.,
the process of estimating the timings of musical notes
from the audio signal of a solo performance (Sec. 3.1).
When the audio signal has sounds of multiple instru-
ments, the sound source separation is required, which
separates an audio signal of multiple instruments into
audio signals of each single instrument (Sec. 3.2).

3.1 Feature Extraction on Solo Perfor-
mance

Figure 4: The extraction of feature vector.



To extract the feature vector from an audio signal, we
develop a simple technique of onset detection. Our idea
is similar to [1].We extract the feature vector from input
music and video database.
To estimate the timings of the musical notes, our
method begins to compute short time Fourier transform
(STFT) to the audio signal (Fig. 4-a), and obtains
the spectrogram (Fig. 4-b). Since the spectrogram is
usually noisy, we smooth it out but preserve strong
edges that correspond to the beginnings and endings
of each musical note. For this purpose, we apply a
horizontal bilateral filter [14] to obtain the smoothed
spectrogram (Fig. 4-c). We differentiate the smoothed
spectrogram horizontally to extract the beginning
and end of each musical note. We then integrate the
spectrogram vertically to obtain one dimensional (1D)
signal (Fig. 4-d). Finally, we extract the feature vector
by finding local maxima of the 1D signal (Fig. 4-e). We
show the score of this audio signal that the performer
actually played in Fig. 4-f. Note that the peaks match
the timings of the score.

Figure 5: The technique to extract the feature vector us-
ing multiple bilateral filters with various window sizes.

To extract high quality feature vectors, we must choose
an adequate window size for the bilateral filter. For ex-
ample, Fig. 5 shows an audio signal of drums, which
starts by the high-frequent drum roll. A large window
produces clean peaks but makes the peaks around the
drum roll disappear. On the other hand, a small win-
dow produces the peaks of the drum roll well but also
too many small peaks that are noises. So, we need
to change the window size adaptively through the sig-
nal. However, since it was difficult to implement such
a smart adaptive filter, we decided to manually cut the
signal into segments based on the observed frequencies,
and apply the adequate bilateral filter to each of them.
This process increases the user’s burden but is impor-
tant to create the high quality feature vector.
We also use the sound volume values as our additional
feature vector. We use volume information to detect
whether the instrument is being played or silent: if it
is silent, we don’t assign any footage of the instrument
to that part. Our feature vector of the volume is binary,
i.e., 1 (there is sounds) or 0 (silent).

We also use the changes of pitch values as our addi-
tional feature vector. To estimate the pitches of an au-
dio signal, we use STRAIGHT [7] to estimate the fun-
damental frequency (F0). Since we are interested not in
the absolute pitch values but only in the relative changes
of pitch values, we use the differentiation of F0 as our
feature vector. This feature vector helps to synthesize
the reasonable performance video by preventing from
assigning a footage of descending pitch to that part of
ascending pitch.

3.2 Sound Source Separation
The algorithm of feature extraction described above
works well for an audio signal of a single instrument.
However, it is often difficult to prepare the audio track
for each instrument independently. For example, the
drum set that we used to record the drummer’s per-
formance gives us only the mixture of sounds of four
drums, i.e., snare drum, bass drum, cymbals, and hi-
hats. In such a case, we want to separate the audio track
for each instrument. For this purpose, we use the semi-
automatic sound source separation technique. Fig. 6
shows an example of the separation of the drum audio
signal.

Figure 6: Sound source separation of drums.

We use the probabilistic latent component analysis
(pLCA) [12], which is developed based on pLSA
algorithm [2]. pLCA is the algorithm for non-negative
matrix factorization that separates a spectrogram S(t, f )
as follows:

S(t, f ) =
N

∑
i

Bi(t, f ), (1)

where Bi(t, f ) is non-negative, t represents the time, f
represents the frequency, and N is the number of the
bases. Fig. 7 shows an example of the separation of an
audio signal: the original spectrogram having the violin
and drums sounds is separated into the twelve bases at
first. We then manually classify them into two classes
in this case, i.e., violin class and drums class. For the vi-
olin class, the user’s selection is visualized as the green
boxes. We sum these bases to obtain the spectrogram
of the violin. These separated sounds are demonstrated
in the supplementary video.

4 VIDEO RETRIEVAL BY FEATURE
MATCHING

For each part of the input music, we retrieve a footage
so that the feature vector of the part of the input music



Figure 7: Sound source separation by pLCA.

matches to the feature vector of the footage. However,
it is unusual that a pair of feature vectors match exactly,
and if we consider only such exact matches, we cannot
retrieve any footage for most parts of the input music.
So, we consider not only exact matches but also simi-
lar matches. Fig. 9 shows some examples: each of red,
green, and blue boxes show the match of feature vec-
tors. The peaks of the same number are matched, but
the timings of them are slightly different. We comple-
ment these differences by changing the playback speed
of the footage in the video synthesis process.

4.1 Our Algorithm
As a method for matching the signal while stretching,
dynamic time warping (DTW) is well-known [9]. DTW
works well for computing similarities between smooth,
continuous signals, but does not work for our case, i.e.,
each signal consists of discontinuous peaks. More pre-
cisely, DTW works well for our case, only when the
number of peaks is the same between the comparing
signals; however, since the method of feature extrac-
tion described above is not always perfect, it often pro-
duces noises. Fig. 8 shows an example. Signals A and
B share two peaks of similar magnitudes, but signal A
has a small peak as noise between them. When we com-
pute the warping path of DTW, it becomes as the path
of red circles, i.e., it makes the second peak of signal B
match to the noisy peak. Based on this observation, we
concluded that DTW is not suitable for the comparison
of peaky signals.

To solve the problem, we propose a simple technique
to efficiently retrieve a footage, allowing the temporal
stretching. Our idea is inspired by the RANSAC algo-
rithm [3] used in many computer vision applications,
which efficiently finds the set of matches that are con-
sistently explained by a transformation.

Fig. 9 shows how our algorithm finds a local match.
The red line of the first step shows 1-to-1 match of
peaks: In this step, we find such a 1-to-1 match by sim-
ply comparing the magnitudes of peaks using a thresh-
old parameter, α . In the second step, we check the

Figure 8: DTW algorithm is not suitable for our case,
where the signal consists of peaks.

neighboring peaks: here, peaks ‘3’ and ‘C’ can be a
match, because the distance between ‘3’ and ‘1’ and
the distance between ‘C’ and ‘A’ are similar. The same
thing can be said for the match of ‘2’ and ‘B’. In the
third step, we further check the neighboring peaks:
here, peaks ‘4’ and ‘D’ can be a match because the
distances are similar. However, peaks ‘5’ and ‘E’ can-
not be a match: the distance between ‘5’ and ‘3’ are
too smaller than the distance between ‘E’ and ‘C’. In
the next step, we further check the neighbors toward
right-hand side, but we don’t check the neighbors to-
ward left-hand side anymore. We continue this process
until the difference of the distances becomes larger than
a threshold parameter, β . We apply this algorithm to
all the possible 1-to-1 matches between the input music
and the video database.

Our algorithm solves the weakness of DTW, and inher-
its the strength of DTW at the same time. The weakness
of DTW is that it is too sensitive to noises as shown in
Fig. 8. However, in our algorithm, we can prevent a
healthy peak from matching to such a small noisy peak
by appropriately specifying the threshold α . On the
other hand, the strength of DTW is that it can take the
temporal stretch into account, which can be achieved by
appropriately specifying the threshold β . Fig. 9-right
shows the three resulting local matches of blue, red,
and green boxes. For example, in the blue match, the
distances of features of the input music are larger than
the distances of features of the video database, which
means that we can fit the video by making the playback
speed slower. In the green match, we make the play-
back speed faster and the video would fit to the part of
the input music.

5 SYNTHESIS OF BAND PERFOR-
MANCE VIDEO

Given the input music and a set of videos of playing
each instrument, the methods described above extract
the feature vectors, retrieve an appropriate footage and
assign it to each part of the input music. Each part of the
input music usually has multiple candidates of footages.
Our system saves this result of retrieval and assignment



Figure 9: Our algorithm to find local matches.

Figure 10: Masking and lapping the solo performance
videos to synthesize the band performance video.

as the project file of Adobe After Effects: the user can
interactively select the best set of footages from the can-
didates and render the final movie. The temporal stretch
of each footage is easily achieved by the time remap-
ping function of Adobe After Effects: when generating
the project file, our system automatically specifying the
parameters of this function for each candidate footage.
This editing process is usually as shown in Fig. 3: since
our method assumes that each video is recorded for
each instrument independently, we cannot synthesize a
scene where all the band members appear at the same
time. One idea to synthesize such a scene is to record
each performer also from a fixed camera as shown in
Fig. 10. Each video has just a solo performance, but we
can synthesize all the band members by spatially mask-
ing and lapping all the videos into the resulting video.

5.1 Automation of Candidate Selection
Manually selecting the best footage for all the parts of
the input music is often hard work and time-consuming.
To reduce this user’s burden, we develop an automatic
method to support this process. We consider this as the
problem of label assignment for each video frame: each
label corresponds to each candidate footage, i.e., the
number of labels L is the same as the number of can-
didate footages. We formulate this as Markov Random
Field (MRF) as follows:

argminiE = ∑
p

Vp (li)+λ ∑
p,q

Wp,q (li, l j) , (2)

where labels of li and l j are assigned to the neighboring
frames of p and q. Vp is the data term, and Wp,q is the
smoothness term. Vp (li) is defined by the Euclidean
distance between the feature vector of the input music at
p frame and the feature vector of the candidate footage
li. Wp,q (i, j) defines the cost of transition from footage
li at p-th frame to footage l j at q-th frame. We can solve
the energy minimization using the graph-cut algorithm
with α-β swap [13].

Fig. 11 shows an example of the energy minimization.
Here are five candidate footages, A, B, C, D, and E.
Here are nine frames. For the 1st and 2nd frames, can-
didate A is assigned, because the data term of A, 0.1 is
smaller than the data term of B, 0.2. For the same rea-
son, candidate E is assigned to the 8th and 9th frames.
On the other hand, for the 3rd frame, candidate B who
has smaller value, 0.2, is not assigned, but candidate
C is assigned. This is because, if we assign B here,
it produces a short footage whose duration is just one
frame at the 3rd frame: the resulting video that has
many such short footages looks annoying because of
many scene transitions. We use the smoothness term to
avoid this, i.e., Wp,q is set to a large value for the transi-
tion that might cause too short frame. More concretely,
W2,3(A,B) is set to a large value, here.

Figure 11: The energy minimization of MRF automat-
ically selects the reasonable candidates. Here are five
candidates, A, B, C, D, and E, and here are nine frames.



6 RESULTS

We present that our system can synthesize the video of
performers appearing to play user-specified music. In
the first experiment, we present that our system can syn-
thesize the video of an arbitrary music using the video
database of amateur performers. In the second experi-
ment, we try to synthesize the music video using videos
of performers who cannot play the instruments. Finally,
we perform subjective evaluations to analyze the us-
ability of our system and the quality of the synthesized
videos.

6.1 Experiment 1

As the input music, we selected two music. One is “Let
it be” of The Beatles, and the other is “Etupirka” of
Taro Hakase. As for “Let it be” played with a violin,
a bass, and drums, we could prepare the wave files for
each instrument in advance. As for “Etupirka” played
with a violin and drums, since we could prepare only
the original wave file, we applied semi-automatic sound
source separation technique to separate it into the violin
part and the drums part. As for the video database, we
asked the amateur performers of viola, bass, and drums
to play each instrument. We did not specify what they
should play but asked to play the instrument freely, i.e.,
any music randomly. We recorded their performance
for one hour using four cameras at the same time. These
cameras are set at the different viewpoints.

The supplementary video has the results. (Please use an
appropriate video player to watch them: in our environ-
ment, Windows Media Player did not play our results
with nice synchronization, i.e., there were significant
time shift between the audio and the footages. Quick-
Time player was much better.) Note that each sound
synchronizes with the movie, especially, drum sounds
do.

The result of “Etupirka” demonstrates the limitation of
our technique: we can find the scenes where the per-
former moves but there is no sound (or the performer
does not move but there are sounds). This is caused
by the failure of the sound source separation. Fig. 13
shows the feature vectors in “Let it be” and “Etupirka”.
“Let it be” was actually good, but “Etupirka” is more
noisy. Sound source separation is a difficult problem.
Our manual selection of pLCA bases makes it possible
to obtain relatively reasonable separation results, but
still causes such noises. To synthesize a high quality
music video, if we could prepare the audio track for
each instrument independently, it would be the best.

Since these results are synthesized using graph-cut, we
did not spend much time to synthesize the performance
video: we took about 15 minutes to synthesize each of
these videos.

6.2 Experiment 2
We prepared the input music “untitled” by an amateur
composer for this experiment: this music is played with
the guitar, the bass, the piano, and the drums. We asked
four students from the computer science department to
be the performers: these students have had little ex-
periecne of the instruments. We allowed them to prac-
tice each instrument for one hour, and recorded their
performance using two cameras: one camera was hand-
held and moving, and the other was fixed.

The supplementary video has the result. While these
performers were novices and just pretending to playing
the instrument, our system can synthesize the perfor-
mance video by retrieving footages and assigning them
to the input music. Also, as described above, we syn-
thesized the scenes of all the band members by mix-
ing the solo performance videos recorded from the fixed
camera.

The guitar and bass performers always strike the same
string, and the fingers of the left hand do not move
much. As the result, if the change of the pitch of in-
put music is significant or the audience has knowledge
about the instrument, the unnaturalness of the synthe-
sized video would become noticable.

To synthesize this result, we did not use graph-cut to
synthesize more high-quality video. We further spend
time to edit camera motions digitally. We took 3 hours
to synthesize this band performance video.

6.3 Subjective Evaluation
We performed a subjective evaluation of the quality of
the synthesized video. We prepared six types of the
videos:

v1: video of "Let it be" synthesized using graph-cut

v2: video of "Let it be" synthesized without graph-cut

v3: video of "Etupirka" synthesized using graph-cut

v4: video of "Etupirka" synthesized without graph-cut

v5: video of "untitled" synthesized without graph-cut

v6: video of "untitled" synthesized using After Effects

We asked the 15 students of the computer science de-
partment to evaluate “how unnatural each video looks”.
Fig. 15 is the result of this user study, where the score
0 means there is no unnatural scene, and the score 6
means that the video is full of unnatural scenes.

v2 and v4 got smaller scores than v1 and v3. This shows
that the quality of the video produced by automatic can-
didate selection tends to be lower. However, this result
also demonstrates that the quality of the graph-cut is not
bad. Especially, the score of v4 is comparable to that of



Figure 12: The frames from the “Let it be” and “Etupirka” videos.

Figure 13: The example of the feature vectors.

v3. We believe the additional manual edit on the result
produced by the graph-cut would improve the quality.

v1 got the worst score. The score of v2 is not good,
either. The main reason was the drums: in the video of
the drum player, he beats the tom. However, since the
sound source separation between tom and snare drum
was difficult, we treat these sounds as the same. As
the result, the evaluators realized this fact, and they as-
signed the bad score to this video. In v2, since such
unnatural scenes could be removed manually, the score
is better.

The interesting fact was that the score is affected by
the evaluator’s experience of each instrument a lot: sev-
eral evaluators who had experiences to play the guitar
or drums tend to realize the unnaturalness of these in-
struments in the video. On the other hand, no evaluator
had experience to play the violin, and there was few
comments about the unnaturalness of the violin. In v3
and v4, the violin is the main instrument, and the drums
are simple, which we believe is the reason about why
the score of them are better than v1 and v2.

v5 and v6 are for comparison between our system and
standard video editing software. We chose Adobe Af-
ter Effects as the video editing software. To make v5,
we manually selected the candidate footages on Adobe
After Effects. To make v6, we used only Adobe After
Effects, which was completely manual work: we manu-
ally search for an adequate video from the database, and
edit it. For both videos, we did our best to synthesize
as the high quality video as possible. The difference
of these scores is very small, which means the qualities
of the resulting videos are almost the same. This fact
proves that our system can synthesize the video whose
quality is similar to the video synthesized completely
manually. The performers in these videos had almost
no knowledge about how to play each instrument. Most
of the evaluators realized the unnaturalness of the per-
formance, e.g., guitar and bass players’ wrong motions.
It is difficult to synthesize the perfect music video of
these band members: if we want to synthesize it, we

must ask them to practice the instruments hard. This is
the other limitation of our method.

Finally, we measured and compared the time required
to synthesize a short, solo performance video by our
system and After Effects. We asked three test users
who are the students of computer science department
to synthesize a short video. Since all of the test users
were not familiar with video editing, we taught how to
use our system and After Effects to each test user, and
gave 10 minutes to practice it respectively. We then ask
them to synthesize a short video whose duration is sev-
eral seconds consisting of a single footage. Fig. 16 is
the average time spent to finish the task: our system
took 59±10 seconds, and After Effects took 578±157
seconds.

When using After Effects, the user had to check the
long video, retrieve an adequate part of it, and then
manually assigns it the part of the music: when the as-
signment process, the manual temporal stretching of the
footage is also required. On the other hand, since our
system shows the candidate footages automatically, the
burden of the user is dramatically reduced: all the user
had to do is to check the candidate footages and select
one of them. Also, when using After Effects, the quali-
ties of the resulting videos are different from subject to
subject. Using our system, the qualities are almost the
same.

Through these subjective evaluations and user studies,
we have shown that our system can synthesize music
videos whose qualities are comparable to the videos
manually edited using the existing software. We also
demonstrated that the user’s burden to create the simi-
lar quality video is much less than the existing software.
Also, our system is simple and can be used even by a
novice user, after 10 minutes tutorial.

7 CONCLUSION AND FUTURE
WORK

In this paper, we proposed a method to synthesize the
video of performers appearing to play user-specified
music. Technically, our method consists of feature ex-
traction, semi-automatic sound source separation, video
retrieval based on local feature mathcing, and automatic
candidate selection by graph-cut algorithm. Through
the experiments, we have shown that our system can
synthesize the music video with the comparable qual-
ity but less burden than the standard video editing soft-
ware.



Figure 14: The frames from the “untitled” videos.

Figure 15: The evaluation of unnaturalness of the six
synthesized videos.

Figure 16: The time required to synthesize a short
video.

In the future, we want to synthesize more high-quality
video using performance videos of a professional
band: currently, the band members are just amateurs
or novices. We would like to try to synthesize a really
professional music video and investigate how our
system helps such a professional demand. The other
future direction is to extend the method to take the vi-
sual information into account: currently, our synthesis
method relies only on the audio information. However,
by analyzing the body motion of the performers, we
expect that we can exploit more semantic information
for the music video synthesis.

8 ACKNOWLEDGEMENT
This work was supported by JSPS KAKENHI :
Grant-in-Aid for Scientific Research (C) Grant Number
23500114. We also thank saku for providing the
original music.

9 REFERENCES
[1] Bello, J., Daudet, L., Abdallah, S., Duxbury, C.,

Davies, M., Sandler, M.: A tutorial on onset de-
tection in music signals. IEEE SAP pp. 1035–
1047 (2005)

[2] Brants, T., Chen, F., Tsochantaridis, I.: Topic-
based document segmentation with probabilistic

latent semantic analysis. In: Proc. of CIKM, pp.
211–218 (2002)

[3] Fischler, M.A., Bolles, R.C.: Random sample
consensus: a paradigm for model fitting with ap-
plications to image analysis and automated car-
tography. Commun. ACM pp. 381–395 (1981)

[4] Foote, J., Cooper, M., Girgensohn, A.: Creating
music videos using automatic media analysis. In:
Proc. of ACM Multimedia, pp. 553–560 (2002)

[5] Goto, M.: An audio-based real-time beat tracking
system for music with or without drum-sounds

[6] Hua, X.S., Lu, L., Zhang, H.J.: Automatically
converting photographic series into video. In:
Proc. of ACM Multimedia, pp. 708–715 (2004)

[7] Kawahara, H., Morise, M., Takahashi, T.,
Nisimura, R., Irino, T., Banno, H.: Tandem-
straight: A temporally stable power spectral rep-
resentation for periodic signals and applications
to interference-free spectrum, f0, and aperiodicity
estimation. In: Proc. of ICASSP (2008)

[8] Nakano, T., Murofushi, S., Goto, M., Morishima,
S.: Dancereproducer: An automatic mashup mu-
sic video generation system by reusing dance
video clips on the web. In: Proc. of SMC, pp.
183–189 (2011)

[9] Sakoe, H., Chiba, S.: Dynamic programming
algorithm optimization for spoken word recog-
nition. In: Readings in speech recognition, pp.
159–165 (1990)

[10] Schutz., M., Manning., F.: Looking beyond the
score: The musical role of percussionists’ ancil-
lary gestures. In: A journal of the Socirty for
Music Theory (2012)

[11] Shiratori, T., Nakazawa, A., Ikeuchi, K.:
Dancing-to-music character animation. Comput.
Graph. Forum pp. 449–458 (2006)

[12] Smaragdis, P., Raj, B., Shashanka, M.: Super-
vised and semi-supervised separation of sounds
from single-channel mixtures. In: Proc. of ICA,
pp. 414–421 (2007)

[13] Szeliski, R., Zabih, R., Scharstein, D., Veksler,
O., Kolmogorov, V., Agarwala, A., Tappen, M.,
Rother, C.: IEEE Trans. Pattern Anal. Mach. In-
tell. pp. 1068 –1080 (2008)

[14] Tomasi, C., Manduchi, R.: Bilateral filtering for
gray and color images. In: Proc. of ICCV, pp.
839–846 (1998)


